清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning for Pediatric Echocardiographic Mitral Regurgitation Detection

胸骨旁线 医学 接收机工作特性 人工智能 二尖瓣反流 放射科 心脏病学 机器学习 计算机科学 内科学
作者
Lindsay A. Edwards,Fei Feng,Mehreen Iqbal,Yong Fu,Amy Sanyahumbi,Shiying Hao,Doff B. McElhinney,Xuefeng B. Ling,Craig Sable,Jiajia Luo
出处
期刊:Journal of The American Society of Echocardiography [Elsevier]
卷期号:36 (1): 96-104.e4 被引量:21
标识
DOI:10.1016/j.echo.2022.09.017
摘要

•Many children undergo echocardiography-based screening for valvular heart disease. •The authors built an AI-based view classification and MR detection model. •The model accurately identified view and MR of any severity. •With more research, automated pediatric valvular disease detection is feasible. Background Echocardiography-based screening for valvular disease in at-risk asymptomatic children can result in early diagnosis. These screening programs, however, are resource intensive and may not be feasible in many resource-limited settings. Automated echocardiographic diagnosis may enable more widespread echocardiographic screening, early diagnosis, and improved outcomes. In this feasibility study, the authors sought to build a machine learning model capable of identifying mitral regurgitation (MR) on echocardiography. Methods Echocardiograms were labeled by clip for view and by frame for the presence of MR. The labeled data were used to build two convolutional neural networks to perform the stepwise tasks of classifying the clips (1) by view and (2) by the presence of any MR, including physiologic, in parasternal long-axis color Doppler views. The view classification model was developed using 66,330 frames, and model performance was evaluated using a hold-out testing data set with 45 echocardiograms (11,730 frames). The MR detection model was developed using 938 frames, and model performance was evaluated using a hold-out testing data set with 42 echocardiograms (182 frames). Metrics to evaluate model performance included accuracy, precision, recall, F1 score (average of precision and recall, ranging from 0 to 1, with 1 suggesting perfect precision and recall), and receiver operating characteristic analysis. Results For the parasternal long-axis view with color Doppler, the view classification convolutional neural network achieved an F1 score of 0.97. The MR detection convolutional neural network achieved testing accuracy of 0.86 and an area under the receiver operating characteristic curve of 0.91. Conclusions A machine learning model is capable of discerning MR on transthoracic echocardiography. This is an encouraging step toward machine learning–based diagnosis of valvular heart disease on pediatric echocardiography. Echocardiography-based screening for valvular disease in at-risk asymptomatic children can result in early diagnosis. These screening programs, however, are resource intensive and may not be feasible in many resource-limited settings. Automated echocardiographic diagnosis may enable more widespread echocardiographic screening, early diagnosis, and improved outcomes. In this feasibility study, the authors sought to build a machine learning model capable of identifying mitral regurgitation (MR) on echocardiography. Echocardiograms were labeled by clip for view and by frame for the presence of MR. The labeled data were used to build two convolutional neural networks to perform the stepwise tasks of classifying the clips (1) by view and (2) by the presence of any MR, including physiologic, in parasternal long-axis color Doppler views. The view classification model was developed using 66,330 frames, and model performance was evaluated using a hold-out testing data set with 45 echocardiograms (11,730 frames). The MR detection model was developed using 938 frames, and model performance was evaluated using a hold-out testing data set with 42 echocardiograms (182 frames). Metrics to evaluate model performance included accuracy, precision, recall, F1 score (average of precision and recall, ranging from 0 to 1, with 1 suggesting perfect precision and recall), and receiver operating characteristic analysis. For the parasternal long-axis view with color Doppler, the view classification convolutional neural network achieved an F1 score of 0.97. The MR detection convolutional neural network achieved testing accuracy of 0.86 and an area under the receiver operating characteristic curve of 0.91. A machine learning model is capable of discerning MR on transthoracic echocardiography. This is an encouraging step toward machine learning–based diagnosis of valvular heart disease on pediatric echocardiography.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qq完成签到 ,获得积分10
5秒前
mictime完成签到,获得积分10
32秒前
稳重傲晴完成签到 ,获得积分10
33秒前
oaoalaa完成签到 ,获得积分10
36秒前
55秒前
浮云完成签到 ,获得积分10
58秒前
假萌完成签到,获得积分10
1分钟前
1分钟前
小布发布了新的文献求助10
1分钟前
digger2023完成签到 ,获得积分10
1分钟前
tmobiusx完成签到,获得积分20
2分钟前
好名字完成签到,获得积分10
2分钟前
xue112完成签到 ,获得积分10
2分钟前
2分钟前
自然的含蕾完成签到 ,获得积分10
2分钟前
佟语雪完成签到,获得积分10
2分钟前
红茸茸羊完成签到 ,获得积分10
2分钟前
woxinyouyou完成签到,获得积分0
2分钟前
2分钟前
jlwang完成签到,获得积分10
3分钟前
贤惠的老黑完成签到 ,获得积分10
3分钟前
大模型应助科研通管家采纳,获得10
4分钟前
4分钟前
widesky777完成签到 ,获得积分10
4分钟前
yelv123完成签到,获得积分10
4分钟前
yelv123发布了新的文献求助10
4分钟前
5分钟前
mfpkuccme完成签到,获得积分10
5分钟前
席江海完成签到,获得积分10
5分钟前
陈坤完成签到,获得积分10
5分钟前
在水一方应助lourahan采纳,获得10
5分钟前
cfd完成签到,获得积分10
6分钟前
鲤鱼完成签到,获得积分10
6分钟前
orixero应助科研通管家采纳,获得10
6分钟前
6分钟前
llll完成签到,获得积分10
6分钟前
6分钟前
wl完成签到 ,获得积分10
6分钟前
6分钟前
lourahan发布了新的文献求助10
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303305
求助须知:如何正确求助?哪些是违规求助? 2937611
关于积分的说明 8482651
捐赠科研通 2611539
什么是DOI,文献DOI怎么找? 1426012
科研通“疑难数据库(出版商)”最低求助积分说明 662524
邀请新用户注册赠送积分活动 647005