Synchronization of Stochastic Neural Networks Using Looped-Lyapunov Functional and Its Application to Secure Communication

同步(交流) 计算机科学 人工神经网络 控制理论(社会学) 传输(电信) 李雅普诺夫函数 混乱的 随机微分方程 Lyapunov稳定性 理论(学习稳定性) 密码系统 控制(管理) 数学 密码学 人工智能 算法 机器学习 电信 应用数学 量子力学 物理 频道(广播) 非线性系统
作者
Bhuvaneshwari Ganesan,Prakash Mani,S. Lakshmanan,A. Manivannan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 5198-5210 被引量:18
标识
DOI:10.1109/tnnls.2022.3202799
摘要

This study aims to investigate the synchronization of user-controlled and uncontrolled neural networks (NNs) that exhibit chaotic solutions. The idea behind focusing on synchronization problems is to design the user-desired NNs by emulating the dynamical properties of traditional NNs rather than redefining them. Besides, instead of conventional NNs, this study considers NNs with significant factors such as time-dependent delays and uncertainties in the neural coefficients. In addition, information transmission over transmission may experience stochastic disturbances and network transmission. These factors will result in a stochastic differential NN model. Analyzing the NNs without these factors may be incompatible during the implementation. Theoretically, the model with stochastic disturbances can be considered a stochastic differential model, and the stability conditions are derived by employing Itô's formula and appropriate integral inequalities. To achieve synchronization, the sampled-data-based control scheme is proposed because it is more effective while information is being transmitted over networks. In contrast to the existing studies, this study contributes in terms of handling stochastic disturbances, effects of time-varying delays, and uncertainties in the system parameters via looped-type Lyapunov functional. Besides this, in the application view, delayed NNs are employed as a cryptosystem that helps to secure the transmission between the sender and the receiver, which is explored by illustrating the statistical measures evaluated for the standard images. From the simulation results, the proposed control and derived sufficient conditions can provide better synchronization and the proposed delayed NNs give a better cryptosystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NIO发布了新的文献求助10
1秒前
1秒前
一一发布了新的文献求助10
1秒前
1秒前
WHB完成签到,获得积分10
2秒前
Asdaf完成签到,获得积分10
2秒前
XY发布了新的文献求助10
2秒前
Li应助彭十采纳,获得30
2秒前
冷酷尔琴发布了新的文献求助10
2秒前
钟程飞完成签到 ,获得积分10
3秒前
Hello应助颜十三采纳,获得10
3秒前
yyu完成签到,获得积分20
4秒前
浑续发布了新的文献求助10
4秒前
毛通完成签到,获得积分10
5秒前
aixx应助annaanna采纳,获得10
5秒前
6秒前
6秒前
6秒前
Jasper应助去瞧瞧采纳,获得10
7秒前
Sanqi完成签到,获得积分10
7秒前
小长夜发布了新的文献求助20
7秒前
冷酷尔琴完成签到,获得积分10
8秒前
小二郎应助布丁采纳,获得10
8秒前
元白发布了新的文献求助10
8秒前
9秒前
sun完成签到,获得积分10
9秒前
hml123发布了新的文献求助10
10秒前
DUWEI完成签到,获得积分10
10秒前
乐乐应助小文采纳,获得10
10秒前
zhou269完成签到,获得积分10
10秒前
科研通AI6应助酷酷的紫南采纳,获得30
10秒前
11秒前
11秒前
elegant122完成签到,获得积分10
11秒前
在水一方应助yuM采纳,获得10
11秒前
科目三应助缓慢含烟采纳,获得10
11秒前
jichao完成签到,获得积分10
11秒前
一一完成签到,获得积分10
12秒前
AmyHu发布了新的文献求助10
12秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258445
求助须知:如何正确求助?哪些是违规求助? 4420393
关于积分的说明 13760182
捐赠科研通 4293953
什么是DOI,文献DOI怎么找? 2356224
邀请新用户注册赠送积分活动 1352546
关于科研通互助平台的介绍 1313340