Synchronization of Stochastic Neural Networks Using Looped-Lyapunov Functional and Its Application to Secure Communication

同步(交流) 计算机科学 人工神经网络 控制理论(社会学) 传输(电信) 李雅普诺夫函数 混乱的 随机微分方程 Lyapunov稳定性 理论(学习稳定性) 密码系统 控制(管理) 数学 密码学 人工智能 算法 机器学习 电信 应用数学 频道(广播) 物理 非线性系统 量子力学
作者
Bhuvaneshwari Ganesan,Prakash Mani,S. Lakshmanan,A. Manivannan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 5198-5210 被引量:18
标识
DOI:10.1109/tnnls.2022.3202799
摘要

This study aims to investigate the synchronization of user-controlled and uncontrolled neural networks (NNs) that exhibit chaotic solutions. The idea behind focusing on synchronization problems is to design the user-desired NNs by emulating the dynamical properties of traditional NNs rather than redefining them. Besides, instead of conventional NNs, this study considers NNs with significant factors such as time-dependent delays and uncertainties in the neural coefficients. In addition, information transmission over transmission may experience stochastic disturbances and network transmission. These factors will result in a stochastic differential NN model. Analyzing the NNs without these factors may be incompatible during the implementation. Theoretically, the model with stochastic disturbances can be considered a stochastic differential model, and the stability conditions are derived by employing Itô's formula and appropriate integral inequalities. To achieve synchronization, the sampled-data-based control scheme is proposed because it is more effective while information is being transmitted over networks. In contrast to the existing studies, this study contributes in terms of handling stochastic disturbances, effects of time-varying delays, and uncertainties in the system parameters via looped-type Lyapunov functional. Besides this, in the application view, delayed NNs are employed as a cryptosystem that helps to secure the transmission between the sender and the receiver, which is explored by illustrating the statistical measures evaluated for the standard images. From the simulation results, the proposed control and derived sufficient conditions can provide better synchronization and the proposed delayed NNs give a better cryptosystem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助壮观梦易采纳,获得10
3秒前
周全敏完成签到 ,获得积分10
4秒前
dalei001完成签到 ,获得积分10
5秒前
6秒前
歪歪完成签到,获得积分10
7秒前
科研通AI2S应助研友_rLmrgn采纳,获得10
7秒前
8秒前
糯米种子完成签到,获得积分10
9秒前
10秒前
llllll完成签到,获得积分10
11秒前
Lyue发布了新的文献求助10
11秒前
林非鹿发布了新的文献求助30
11秒前
科目三应助苗条的寒珊采纳,获得10
14秒前
大龙哥886应助大力的问蕊采纳,获得10
15秒前
15秒前
黎娅完成签到 ,获得积分10
16秒前
mjc完成签到 ,获得积分10
17秒前
andy完成签到,获得积分10
17秒前
Orange应助ttg990720采纳,获得10
17秒前
科研通AI2S应助葡萄柚采纳,获得10
19秒前
nn完成签到,获得积分10
19秒前
英俊的铭应助幸福台灯采纳,获得10
20秒前
bingsu108完成签到,获得积分10
21秒前
21秒前
21秒前
顾矜应助楼梯口无头女孩采纳,获得10
22秒前
FashionBoy应助明理慕灵采纳,获得10
23秒前
英俊的铭应助歪歪采纳,获得10
23秒前
24秒前
25秒前
26秒前
26秒前
nan发布了新的文献求助10
26秒前
huangbing123发布了新的文献求助10
27秒前
妙手回春板蓝根完成签到,获得积分10
28秒前
29秒前
29秒前
森森发布了新的文献求助10
30秒前
科研通AI2S应助杭笑寒采纳,获得10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565622
求助须知:如何正确求助?哪些是违规求助? 4650680
关于积分的说明 14692351
捐赠科研通 4592670
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463281