亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Meta-Path Discovery for Effective Graph-Based Recommendation

计算机科学 推荐系统 路径(计算) 骨料(复合) 人工智能 图形 机器学习 数据挖掘 情报检索 理论计算机科学 计算机网络 复合材料 材料科学
作者
Wentao Ning,Reynold Cheng,Jiajun Shen,Nur Al Hasan Haldar,Ben Kao,Xiao Yan,Nan Huo,Wai Kit Lam,Li Tian,Bo Tang
标识
DOI:10.1145/3511808.3557244
摘要

Heterogeneous Information Networks (HINs) are labeled graphs that depict relationships among different types of entities (e.g., users, movies and directors). For HINs,meta-path-based recommenders (MPRs) utilize meta-paths (i.e., abstract paths consisting of node and link types) to predict user preference, and have attracted a lot of attention due to their explainability and performance. We observe that the performance of MPRs is highly sensitive to the meta-paths they use, but existing works manually select the meta-paths from many possible ones. Thus, to discover effective meta-paths automatically, we propose the Reinforcement learning-based Meta-path Selection (RMS) framework. Specifically, we define a vector encoding for meta-paths and design a policy network to extend meta-paths. The policy network is trained based on the results of downstream recommendation tasks and an early stopping approximation strategy is proposed to speed up training. (RMS) is a general model, and it can work with all existing MPRs. We also propose a new MPR called RMS-HRec, which uses an attention mechanism to aggregate information from the meta-paths. We conduct extensive experiments on real datasets. Compared with the manually selected meta-paths, the meta-paths identified by (RMS) consistently improve recommendation quality. Moreover, RMS-HRec outperforms state-of-the-art recommender systems by an average of 7% in hit ratio. The codes and datasets are available on https://github.com/Stevenn9981/RMS-HRec.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
数值分析完成签到 ,获得积分10
刚刚
FyNic发布了新的文献求助10
2秒前
7秒前
7秒前
8秒前
FyNic完成签到,获得积分10
8秒前
於陵仲子发布了新的文献求助10
13秒前
13秒前
陈雨发布了新的文献求助10
13秒前
研友_n0gOKL发布了新的文献求助50
14秒前
小明发布了新的文献求助10
16秒前
背后书兰发布了新的文献求助10
17秒前
20秒前
Summer完成签到,获得积分10
21秒前
善学以致用应助於陵仲子采纳,获得10
24秒前
moiumuio完成签到,获得积分10
25秒前
我是老大应助背后书兰采纳,获得10
26秒前
香蕉觅云应助迷你的以丹采纳,获得10
27秒前
干净博涛完成签到 ,获得积分10
33秒前
於陵仲子完成签到,获得积分10
34秒前
陈雨完成签到,获得积分20
35秒前
江竹兰完成签到,获得积分10
36秒前
37秒前
41秒前
42秒前
Tendency完成签到 ,获得积分10
48秒前
48秒前
jinmuna完成签到,获得积分10
48秒前
49秒前
鳗鱼邪欢完成签到 ,获得积分10
52秒前
疯狂喵完成签到 ,获得积分10
54秒前
Amy发布了新的文献求助10
55秒前
56秒前
鹿小新完成签到 ,获得积分10
1分钟前
迷你的以丹完成签到 ,获得积分10
1分钟前
1分钟前
SIiveryyyy完成签到,获得积分10
1分钟前
Yannis发布了新的文献求助10
1分钟前
研友_n0gOKL发布了新的文献求助10
1分钟前
Lyw完成签到 ,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307263
求助须知:如何正确求助?哪些是违规求助? 2940978
关于积分的说明 8500011
捐赠科研通 2615243
什么是DOI,文献DOI怎么找? 1428784
科研通“疑难数据库(出版商)”最低求助积分说明 663542
邀请新用户注册赠送积分活动 648382