The effect of humidity on the discharge mode transition of air discharge plasma

湿度 等离子体 相对湿度 氮氧化物 介质阻挡放电 大气科学 原子物理学 物理 气象学 化学 燃烧 量子力学 有机化学
作者
Xi Wang,Santu Luo,Dingxin Liu,Zifeng Wang,Zhijie Liu,Li Guo,Xiaohua Wang,Mingzhe Rong
出处
期刊:Physics of Plasmas [American Institute of Physics]
卷期号:29 (9) 被引量:10
标识
DOI:10.1063/5.0107803
摘要

Cold atmospheric plasma in air commonly operates in the O3 mode and NOx mode, which easily interconvert through a transition mode, depending on discharge conditions. Given that the humidity varies considerably in different weather, it is important to elucidate the effect of humidity on the discharge mode transition, but few studies have been reported thus far. In this study, air plasmas were generated by a surface dielectric barrier discharge with different discharge powers of 6, 9, and 12 W, and the relative humidity of air was controlled at 1.5% (dry air), 40%, or 80% for a comparative study. It was found that an increase in humidity suppressed the production of O3 but promoted that of NO2 when the discharge power was 6 W, whereas it promoted the production of O3 but suppressed that of NO2 when the discharge power was 12 W. This implies that air humidity could have a bidirectional effect on the discharge mode transition, which was validated by experiments with a moderate power of 9 W. In that case, the discharge in dry air maintained the transition mode at a quasi-stable state, but it transited either into the NOx mode when the humidity was 40% or into the O3 mode when the humidity was 80%. A competition between reaction pathways dominated by N2(ν) or water-originated compounds may be the cause, and our findings indicate that the effect of humidity should be taken seriously in the research and development of air discharge plasmas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
又要起名字关注了科研通微信公众号
1秒前
可爱的函函应助su采纳,获得10
1秒前
2秒前
澳澳完成签到,获得积分10
3秒前
3秒前
善学以致用应助纯真抽屉采纳,获得10
4秒前
4秒前
笑笑发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
Hello应助cora采纳,获得10
7秒前
汉唐精彩完成签到,获得积分10
8秒前
8秒前
9秒前
田茂青完成签到,获得积分10
9秒前
damian发布了新的文献求助30
9秒前
9秒前
聪明芒果完成签到,获得积分10
9秒前
Vvvvvvv应助虫二先生采纳,获得10
9秒前
西大研究生完成签到 ,获得积分10
9秒前
10秒前
10秒前
呆呆完成签到,获得积分10
10秒前
左一酱完成签到 ,获得积分10
11秒前
平淡南霜发布了新的文献求助10
11秒前
Sweet关注了科研通微信公众号
11秒前
11秒前
赘婿应助wangfu采纳,获得10
12秒前
12秒前
12秒前
pipge完成签到,获得积分20
12秒前
13秒前
澳澳发布了新的文献求助10
13秒前
14秒前
清脆的映天完成签到,获得积分10
14秒前
yl驳回了sweetbearm应助
14秒前
隐形曼青应助2鱼采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794