Channel Exchanging Networks for Multimodal and Multitask Dense Image Prediction

计算机科学 多任务学习 人工智能 机器学习 多模式学习 学习迁移 模式 频道(广播) 任务(项目管理) 计算机网络 社会科学 社会学 经济 管理
作者
Yikai Wang,Fuchun Sun,Wenbing Huang,Fengxiang He,Dacheng Tao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:6
标识
DOI:10.1109/tpami.2022.3211086
摘要

Multimodal fusion and multitask learning are two vital topics in machine learning. Despite the fruitful progress, existing methods for both problems are still brittle to the same challenge-it remains dilemmatic to integrate the common information across modalities (resp. tasks) meanwhile preserving the specific patterns of each modality (resp. task). Besides, while they are actually closely related to each other, multimodal fusion and multitask learning are rarely explored within the same methodological framework before. In this paper, we propose Channel-Exchanging-Network (CEN) which is self-adaptive, parameter-free, and more importantly, applicable for multimodal and multitask dense image prediction. At its core, CEN adaptively exchanges channels between subnetworks of different modalities. Specifically, the channel exchanging process is self-guided by individual channel importance that is measured by the magnitude of Batch-Normalization (BN) scaling factor during training. For the application of dense image prediction, the validity of CEN is tested by four different scenarios: multimodal fusion, cycle multimodal fusion, multitask learning, and multimodal multitask learning. Extensive experiments on semantic segmentation via RGB-D data and image translation through multi-domain input verify the effectiveness of CEN compared to state-of-the-art methods. Detailed ablation studies have also been carried out, which demonstrate the advantage of each component we propose. Our code is available at https://github.com/yikaiw/CEN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小吉完成签到 ,获得积分10
刚刚
摸爬滚打发布了新的文献求助30
刚刚
bo发布了新的文献求助10
刚刚
刚刚
贾哲宇完成签到,获得积分20
2秒前
无名完成签到,获得积分10
2秒前
luli发布了新的文献求助10
2秒前
脑洞疼应助tanrui采纳,获得10
2秒前
隐形曼青应助ahan采纳,获得10
2秒前
无敌最俊朗应助二小采纳,获得30
3秒前
顾矜应助杰尼龟采纳,获得10
4秒前
wangsiyuan完成签到 ,获得积分10
4秒前
Amorino发布了新的文献求助10
5秒前
6秒前
7秒前
一一完成签到,获得积分10
7秒前
8秒前
cloud发布了新的文献求助10
10秒前
一一发布了新的文献求助10
10秒前
11秒前
11秒前
星辰大海应助1234采纳,获得10
11秒前
乐乐应助mewmew采纳,获得10
12秒前
Owen应助晁子枫采纳,获得10
12秒前
madcatalysis完成签到,获得积分10
13秒前
一一发布了新的文献求助20
13秒前
JamesPei应助tivyg'lk采纳,获得10
14秒前
14秒前
15秒前
杰尼龟发布了新的文献求助10
15秒前
17秒前
Echo完成签到,获得积分10
17秒前
书是人类进步的阶梯完成签到 ,获得积分10
19秒前
SciGPT应助小明采纳,获得10
19秒前
19秒前
飞星发布了新的文献求助10
20秒前
所所应助luli采纳,获得10
21秒前
杰尼龟完成签到,获得积分10
21秒前
ZW完成签到,获得积分10
21秒前
楼台杏花琴弦完成签到,获得积分10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312815
求助须知:如何正确求助?哪些是违规求助? 2945259
关于积分的说明 8524020
捐赠科研通 2621043
什么是DOI,文献DOI怎么找? 1433283
科研通“疑难数据库(出版商)”最低求助积分说明 664924
邀请新用户注册赠送积分活动 650271