行星际空间飞行
计算机科学
弹道
火星探测计划
人工神经网络
人工智能
进化计算
天体生物学
天文
物理
太阳风
量子力学
磁场
作者
Dario Izzo,Christopher Sprague,Dharmesh Tailor
出处
期刊:Cornell University - arXiv
日期:2018-01-01
标识
DOI:10.48550/arxiv.1802.00180
摘要
After providing a brief historical overview on the synergies between artificial intelligence research, in the areas of evolutionary computations and machine learning, and the optimal design of interplanetary trajectories, we propose and study the use of deep artificial neural networks to represent, on-board, the optimal guidance profile of an interplanetary mission. The results, limited to the chosen test case of an Earth-Mars orbital transfer, extend the findings made previously for landing scenarios and quadcopter dynamics, opening a new research area in interplanetary trajectory planning.
科研通智能强力驱动
Strongly Powered by AbleSci AI