化学
共聚物
荧光
两亲性
胸腺嘧啶
纳米颗粒
纳米复合材料
发光
纳米技术
化学工程
光化学
材料科学
聚合物
有机化学
光电子学
工程类
物理
量子力学
生物化学
DNA
作者
Shixing Lei,Jia Tian,Yuetong Kang,Yifan Zhang,Ian Manners
摘要
Aggregation-induced emission (AIE) represents a powerful tool in nanoscience as a result of enhanced luminescence in the condensed state. Although AIEgenic materials have been utilized in a wide range of applications, well-defined self-assembled nanoparticles with tailorable and uniform dimensions and morphology remain challenging to access. Herein, we use the seeded growth, living crystallization-driven self-assembly (CDSA) method to prepare size-tunable and uniform AIE-active 2D nanoplatelets from amphiphilic block copolymer (BCP) precursors with a crystallizable core-forming block and a corona-forming block to which tetraphenylethene (TPE) groups were covalently grafted as AIE-active pendants. The nanoplatelets were formed as a result of a solvophobicity-induced 1D to 2D morphology preference change, which accompanied the seeded growth of a BCP with a quaternized corona-forming block bearing the TPE luminogen. The 2D nanoplatelets exhibited a solvent-responsive fluorescent emission, and examples with coronas containing homogeneously distributed AIE-active TPE groups and Hg(II)-capturing thymine units exhibited excellent performance as proof-of-concept "turn-on" sensors for Hg(II) detection with a rapid response, high selectivity, and a low detection limit (5-125 × 10-9 M, i.e., 1-25 ppb). The fluorescence intensity was found to be nonlinear with respect to analyte concentration and to increase with the area of the nanoplatelet. This behavior is consistent with a cooperative mechanism based on changes in the steric compression of the corona chains, which gives rise to a restriction of the intramolecular motion (RIM) effect.
科研通智能强力驱动
Strongly Powered by AbleSci AI