Deep learning-based automatic scoring models for the disease activity of rheumatoid arthritis based on multimodal ultrasound images

医学 类风湿性关节炎 人工智能 疾病 深度学习 超声波 放射科 机器学习 医学物理学 内科学 计算机科学
作者
Xuelei He,Ming Wang,Chenyang Zhao,Qian Wang,Rui Zhang,Jian Liu,Yixiu Zhang,Zhenhong Qi,Na Su,Wei Yao,Yang Gui,George W. Kattawar,Xinping Tian,Xiaofeng Zeng,Yuxin Jiang,Kun Wang,Meng Yang
出处
期刊:Rheumatology [Oxford University Press]
卷期号:63 (3): 866-873 被引量:2
标识
DOI:10.1093/rheumatology/kead366
摘要

Abstract Objectives We aimed to investigate the value of deep learning (DL) models based on multimodal ultrasonographic (US) images to quantify RA activity. Methods Static greyscale (SGS), dynamic greyscale (DGS), static power Doppler (SPD) and dynamic power Doppler (DPD) US images were collected and evaluated by two expert radiologists according to the EULAR–OMERACT Synovitis Scoring system. Four DL models were developed based on the ResNet-type structure, evaluated on two separate test cohorts, and finally compared with the performance of 12 radiologists with different levels of experience. Results In total, 1244 images were used for the model training, and 152 and 354 for testing (cohort 1 and 2, respectively). The best-performing models for the scores of 0/1/2/3 were the DPD, SGS, DGS and SPD models, respectively (Area Under the receiver operating characteristic Curve [AUC] = 0.87/0.95/0.74/0.95; no significant differences). All the DL models provided results comparable to the experienced radiologists on a per-image basis (intraclass correlation coefficient: 0.239–0.756, P < 0.05). The SPD model performed better than the SGS one on test cohort 1 (score of 0/2/3: AUC = 0.82/0.67/0.95 vs 0.66/0.66/0.75, respectively) and test cohort 2 (score of 0: AUC = 0.89 vs 0.81). The dynamic DL models performed better than the static ones in most of the scoring processes and were more accurate than the most of senior radiologists, especially the DPD model. Conclusion DL models based on multimodal US images allow a quantitative and objective assessment of RA activity. Dynamic DL models in particular have potential value in assisting radiologists to improve the accuracy of RA US-based grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Rrr发布了新的文献求助10
2秒前
跳跃的静曼完成签到,获得积分10
2秒前
丰富的不惜完成签到,获得积分10
3秒前
4秒前
wfc完成签到,获得积分10
4秒前
浅梨涡完成签到 ,获得积分10
6秒前
JamesPei应助椰子熟了耶采纳,获得20
7秒前
hanyang965发布了新的文献求助10
7秒前
orixero应助喵呜采纳,获得10
7秒前
7秒前
7秒前
8秒前
en发布了新的文献求助10
8秒前
9秒前
白宝宝北北白应助氕氘氚采纳,获得10
9秒前
10秒前
进取拼搏完成签到,获得积分10
10秒前
hehsk完成签到,获得积分10
10秒前
无限鞅完成签到,获得积分20
10秒前
11秒前
DY完成签到 ,获得积分10
12秒前
郑仕完成签到,获得积分10
12秒前
12秒前
进取拼搏发布了新的文献求助10
13秒前
顺顺发布了新的文献求助10
13秒前
13秒前
在水一方应助涛涛采纳,获得10
13秒前
英姑应助义气的傲松采纳,获得10
14秒前
14秒前
哭泣蛋挞完成签到 ,获得积分10
15秒前
sweetbearm应助通~采纳,获得10
15秒前
田様应助吃饭用大碗采纳,获得10
16秒前
16秒前
17秒前
18秒前
阿斯蒂和琴酒完成签到 ,获得积分10
18秒前
珂珂发布了新的文献求助10
20秒前
20秒前
迟大猫应助我是站长才怪采纳,获得30
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808