Deep learning-based automatic scoring models for the disease activity of rheumatoid arthritis based on multimodal ultrasound images

医学 类风湿性关节炎 人工智能 疾病 深度学习 超声波 放射科 机器学习 医学物理学 内科学 计算机科学
作者
Xuelei He,Ming Wang,Chenyang Zhao,Qian Wang,Rui Zhang,Jian Liu,Yixiu Zhang,Zhenhong Qi,Na Su,Wei Yao,Yang Gui,George W. Kattawar,Xinping Tian,Xiaofeng Zeng,Yuxin Jiang,Kun Wang,Meng Yang
出处
期刊:Rheumatology [Oxford University Press]
卷期号:63 (3): 866-873 被引量:2
标识
DOI:10.1093/rheumatology/kead366
摘要

Abstract Objectives We aimed to investigate the value of deep learning (DL) models based on multimodal ultrasonographic (US) images to quantify RA activity. Methods Static greyscale (SGS), dynamic greyscale (DGS), static power Doppler (SPD) and dynamic power Doppler (DPD) US images were collected and evaluated by two expert radiologists according to the EULAR–OMERACT Synovitis Scoring system. Four DL models were developed based on the ResNet-type structure, evaluated on two separate test cohorts, and finally compared with the performance of 12 radiologists with different levels of experience. Results In total, 1244 images were used for the model training, and 152 and 354 for testing (cohort 1 and 2, respectively). The best-performing models for the scores of 0/1/2/3 were the DPD, SGS, DGS and SPD models, respectively (Area Under the receiver operating characteristic Curve [AUC] = 0.87/0.95/0.74/0.95; no significant differences). All the DL models provided results comparable to the experienced radiologists on a per-image basis (intraclass correlation coefficient: 0.239–0.756, P < 0.05). The SPD model performed better than the SGS one on test cohort 1 (score of 0/2/3: AUC = 0.82/0.67/0.95 vs 0.66/0.66/0.75, respectively) and test cohort 2 (score of 0: AUC = 0.89 vs 0.81). The dynamic DL models performed better than the static ones in most of the scoring processes and were more accurate than the most of senior radiologists, especially the DPD model. Conclusion DL models based on multimodal US images allow a quantitative and objective assessment of RA activity. Dynamic DL models in particular have potential value in assisting radiologists to improve the accuracy of RA US-based grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王二哈完成签到,获得积分10
刚刚
行者无疆发布了新的文献求助10
1秒前
令散内方完成签到,获得积分10
1秒前
外向的雁玉完成签到,获得积分10
1秒前
慧灰huihui发布了新的文献求助10
2秒前
Ava应助Desire采纳,获得10
3秒前
量子星尘发布了新的文献求助10
6秒前
风信子完成签到,获得积分10
6秒前
小熊完成签到 ,获得积分10
8秒前
12秒前
shu完成签到,获得积分10
12秒前
12秒前
勤奋的毛豆完成签到,获得积分10
15秒前
行者无疆完成签到,获得积分10
15秒前
16秒前
Jackylee完成签到,获得积分10
16秒前
careyzhou发布了新的文献求助10
17秒前
舒心之云完成签到,获得积分10
19秒前
Desire发布了新的文献求助10
19秒前
独自受罪完成签到 ,获得积分10
20秒前
甘蓝型油菜完成签到,获得积分10
21秒前
Distance发布了新的文献求助10
22秒前
大橙子发布了新的文献求助10
23秒前
毛哥看文献完成签到 ,获得积分10
23秒前
Desire完成签到,获得积分10
25秒前
AiQi完成签到 ,获得积分10
26秒前
月月鸟完成签到 ,获得积分10
27秒前
陈永伟完成签到,获得积分10
29秒前
传奇3应助qq采纳,获得10
29秒前
feihua1完成签到 ,获得积分10
30秒前
大轩完成签到 ,获得积分10
31秒前
miemie66完成签到,获得积分10
32秒前
33秒前
Sun1c7完成签到,获得积分10
33秒前
大仁哥完成签到,获得积分10
33秒前
qqy完成签到,获得积分10
34秒前
失眠的香菇完成签到 ,获得积分10
36秒前
机灵的笼包完成签到,获得积分10
36秒前
兔子发布了新的文献求助10
37秒前
ohwhale完成签到 ,获得积分10
38秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022