Deep learning-based automatic scoring models for the disease activity of rheumatoid arthritis based on multimodal ultrasound images

医学 类风湿性关节炎 人工智能 疾病 深度学习 超声波 放射科 机器学习 医学物理学 内科学 计算机科学
作者
Xuelei He,Ming Wang,Chenyang Zhao,Qian Wang,Rui Zhang,Jian Liu,Yixiu Zhang,Zhenhong Qi,Na Su,Wei Yao,Yang Gui,George W. Kattawar,Xinping Tian,Xiaofeng Zeng,Yuxin Jiang,Kun Wang,Meng Yang
出处
期刊:Rheumatology [Oxford University Press]
卷期号:63 (3): 866-873 被引量:2
标识
DOI:10.1093/rheumatology/kead366
摘要

Abstract Objectives We aimed to investigate the value of deep learning (DL) models based on multimodal ultrasonographic (US) images to quantify RA activity. Methods Static greyscale (SGS), dynamic greyscale (DGS), static power Doppler (SPD) and dynamic power Doppler (DPD) US images were collected and evaluated by two expert radiologists according to the EULAR–OMERACT Synovitis Scoring system. Four DL models were developed based on the ResNet-type structure, evaluated on two separate test cohorts, and finally compared with the performance of 12 radiologists with different levels of experience. Results In total, 1244 images were used for the model training, and 152 and 354 for testing (cohort 1 and 2, respectively). The best-performing models for the scores of 0/1/2/3 were the DPD, SGS, DGS and SPD models, respectively (Area Under the receiver operating characteristic Curve [AUC] = 0.87/0.95/0.74/0.95; no significant differences). All the DL models provided results comparable to the experienced radiologists on a per-image basis (intraclass correlation coefficient: 0.239–0.756, P < 0.05). The SPD model performed better than the SGS one on test cohort 1 (score of 0/2/3: AUC = 0.82/0.67/0.95 vs 0.66/0.66/0.75, respectively) and test cohort 2 (score of 0: AUC = 0.89 vs 0.81). The dynamic DL models performed better than the static ones in most of the scoring processes and were more accurate than the most of senior radiologists, especially the DPD model. Conclusion DL models based on multimodal US images allow a quantitative and objective assessment of RA activity. Dynamic DL models in particular have potential value in assisting radiologists to improve the accuracy of RA US-based grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
w_完成签到,获得积分10
2秒前
yg完成签到,获得积分10
2秒前
yyyyyy完成签到,获得积分10
3秒前
小北完成签到,获得积分10
3秒前
花佩剑完成签到,获得积分10
4秒前
5秒前
蓝色的大尾巴鱼完成签到,获得积分10
5秒前
0168先生完成签到 ,获得积分10
5秒前
小泌完成签到,获得积分10
6秒前
呆啊完成签到,获得积分10
7秒前
revew666完成签到,获得积分10
7秒前
迅速的仰完成签到,获得积分10
8秒前
8秒前
8秒前
天天浇水完成签到,获得积分10
8秒前
赘婿应助荡秋千的猴子采纳,获得10
9秒前
ZH完成签到,获得积分10
9秒前
简单的白云完成签到,获得积分10
11秒前
威武的捕发布了新的文献求助10
12秒前
lezbj99发布了新的文献求助10
12秒前
感谢各位@!完成签到,获得积分10
12秒前
洋yangyang完成签到 ,获得积分10
13秒前
14秒前
自由完成签到 ,获得积分10
14秒前
杨冰完成签到,获得积分10
15秒前
思思完成签到,获得积分10
17秒前
VOLUNTINA发布了新的文献求助10
18秒前
18秒前
我要向阳而生完成签到,获得积分10
18秒前
SciGPT应助风趣谷秋采纳,获得10
19秒前
羞涩的丹云完成签到,获得积分20
19秒前
sinlar完成签到,获得积分20
20秒前
1111完成签到,获得积分10
20秒前
123完成签到,获得积分10
21秒前
深情安青应助威武的捕采纳,获得10
21秒前
22秒前
Rabbit完成签到 ,获得积分10
22秒前
Wanglh发布了新的文献求助10
23秒前
杨佳于完成签到,获得积分20
24秒前
活力菠萝完成签到,获得积分10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798255
关于积分的说明 7827373
捐赠科研通 2454823
什么是DOI,文献DOI怎么找? 1306491
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565