Deep learning-based automatic scoring models for the disease activity of rheumatoid arthritis based on multimodal ultrasound images

医学 类风湿性关节炎 人工智能 疾病 深度学习 超声波 放射科 机器学习 医学物理学 内科学 计算机科学
作者
Xuelei He,Ming Wang,Chenyang Zhao,Qian Wang,Rui Zhang,Jian Liu,Yixiu Zhang,Zhenhong Qi,Na Su,Wei Yao,Yang Gui,Jianchu Li,Xinping Tian,Xiaofeng Zeng,Yuxin Jiang,Kun Wang,Meng Yang
出处
期刊:Rheumatology [Oxford University Press]
卷期号:63 (3): 866-873 被引量:7
标识
DOI:10.1093/rheumatology/kead366
摘要

Abstract Objectives We aimed to investigate the value of deep learning (DL) models based on multimodal ultrasonographic (US) images to quantify RA activity. Methods Static greyscale (SGS), dynamic greyscale (DGS), static power Doppler (SPD) and dynamic power Doppler (DPD) US images were collected and evaluated by two expert radiologists according to the EULAR–OMERACT Synovitis Scoring system. Four DL models were developed based on the ResNet-type structure, evaluated on two separate test cohorts, and finally compared with the performance of 12 radiologists with different levels of experience. Results In total, 1244 images were used for the model training, and 152 and 354 for testing (cohort 1 and 2, respectively). The best-performing models for the scores of 0/1/2/3 were the DPD, SGS, DGS and SPD models, respectively (Area Under the receiver operating characteristic Curve [AUC] = 0.87/0.95/0.74/0.95; no significant differences). All the DL models provided results comparable to the experienced radiologists on a per-image basis (intraclass correlation coefficient: 0.239–0.756, P < 0.05). The SPD model performed better than the SGS one on test cohort 1 (score of 0/2/3: AUC = 0.82/0.67/0.95 vs 0.66/0.66/0.75, respectively) and test cohort 2 (score of 0: AUC = 0.89 vs 0.81). The dynamic DL models performed better than the static ones in most of the scoring processes and were more accurate than the most of senior radiologists, especially the DPD model. Conclusion DL models based on multimodal US images allow a quantitative and objective assessment of RA activity. Dynamic DL models in particular have potential value in assisting radiologists to improve the accuracy of RA US-based grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyqking发布了新的文献求助10
刚刚
玛卡巴卡发布了新的文献求助10
刚刚
屈初雪完成签到,获得积分10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
Ian完成签到,获得积分10
刚刚
cui发布了新的文献求助10
刚刚
连灵竹完成签到,获得积分0
刚刚
KATSU关注了科研通微信公众号
1秒前
1秒前
平淡的文龙完成签到,获得积分10
1秒前
2秒前
无花果应助科研通管家采纳,获得10
2秒前
甘雨露完成签到,获得积分20
2秒前
2秒前
Akim应助不想开学吧采纳,获得10
2秒前
2秒前
解剖六楼那小哥完成签到 ,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Zx_1993应助科研通管家采纳,获得10
4秒前
scxl2000发布了新的文献求助10
4秒前
今后应助科研通管家采纳,获得10
4秒前
4秒前
所所应助科研通管家采纳,获得10
5秒前
赵真完成签到,获得积分10
5秒前
上官若男应助端庄凌文采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
6秒前
情怀应助舒服的从阳采纳,获得10
6秒前
6秒前
李健应助科研通管家采纳,获得10
6秒前
6秒前
飞翔的秋秋完成签到,获得积分10
6秒前
852应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
7秒前
受伤海秋完成签到,获得积分10
7秒前
啊这应助科研通管家采纳,获得10
7秒前
fz发布了新的文献求助10
7秒前
YS_Zeng完成签到 ,获得积分10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261422
求助须知:如何正确求助?哪些是违规求助? 4422535
关于积分的说明 13766643
捐赠科研通 4297013
什么是DOI,文献DOI怎么找? 2357641
邀请新用户注册赠送积分活动 1354024
关于科研通互助平台的介绍 1315182