衬垫
认知无线电
计算机科学
强化学习
最大化
重新使用
频率分配
计算机网络
频谱管理
资源管理(计算)
资源配置
发射机
分布式计算
数学优化
信噪比(成像)
无线
人工智能
电信
频道(广播)
工程类
数学
废物管理
作者
Zain Ali,Zouheir Rezki,Hamid R. Sadjadpour
标识
DOI:10.1109/lcomm.2023.3296040
摘要
In this paper, we consider the problem of maximizing spectrum reuse in an underlay cognitive radio (CR) system where multiple secondary transmitters (STs) are communicating with the respective secondary receivers (SRs) in a device-to-device (D2D) communication fashion, and the CSI is not available at the STs. The problem at hand can not be solved using conventional optimization techniques proposed in the literature because they require CSIs to provide a solution. Hence, we propose a distributed deep reinforcement learning (DRL) framework for optimizing the resource allocation at each ST with only a single bit feedback from the respective SR. The simulations show that the proposed framework provides an excellent performance, where for small rate requirements the number of STs successfully communicating on the limited channels approaches the total number of STs in the system.
科研通智能强力驱动
Strongly Powered by AbleSci AI