Robotic ultrasound imaging: State-of-the-art and future perspectives

计算机科学 过程(计算) 人工智能 遥操作 模式 人机交互 数据科学 机器人 社会科学 操作系统 社会学
作者
Zhongliang Jiang,Septimiu E. Salcudean,Nassir Navab
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:89: 102878-102878 被引量:29
标识
DOI:10.1016/j.media.2023.102878
摘要

Ultrasound (US) is one of the most widely used modalities for clinical intervention and diagnosis due to the merits of providing non-invasive, radiation-free, and real-time images. However, free-hand US examinations are highly operator-dependent. Robotic US System (RUSS) aims at overcoming this shortcoming by offering reproducibility, while also aiming at improving dexterity, and intelligent anatomy and disease-aware imaging. In addition to enhancing diagnostic outcomes, RUSS also holds the potential to provide medical interventions for populations suffering from the shortage of experienced sonographers. In this paper, we categorize RUSS as teleoperated or autonomous. Regarding teleoperated RUSS, we summarize their technical developments, and clinical evaluations, respectively. This survey then focuses on the review of recent work on autonomous robotic US imaging. We demonstrate that machine learning and artificial intelligence present the key techniques, which enable intelligent patient and process-specific, motion and deformation-aware robotic image acquisition. We also show that the research on artificial intelligence for autonomous RUSS has directed the research community toward understanding and modeling expert sonographers' semantic reasoning and action. Here, we call this process, the recovery of the "language of sonography". This side result of research on autonomous robotic US acquisitions could be considered as valuable and essential as the progress made in the robotic US examination itself. This article will provide both engineers and clinicians with a comprehensive understanding of RUSS by surveying underlying techniques. Additionally, we present the challenges that the scientific community needs to face in the coming years in order to achieve its ultimate goal of developing intelligent robotic sonographer colleagues. These colleagues are expected to be capable of collaborating with human sonographers in dynamic environments to enhance both diagnostic and intraoperative imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luu完成签到,获得积分10
1秒前
打水不打饭完成签到 ,获得积分10
3秒前
肥肥发布了新的文献求助10
4秒前
灵巧的馒头完成签到,获得积分10
7秒前
zhenzheng完成签到 ,获得积分10
8秒前
小马甲应助小小学神采纳,获得10
9秒前
啊懂完成签到,获得积分10
9秒前
王治豪完成签到,获得积分10
9秒前
太叔尔柳完成签到,获得积分10
11秒前
13秒前
14秒前
15秒前
18秒前
聪明的灵寒完成签到 ,获得积分10
22秒前
英俊的念寒完成签到,获得积分10
25秒前
25秒前
26秒前
smile完成签到,获得积分10
28秒前
28秒前
wang122发布了新的文献求助10
31秒前
dudu发布了新的文献求助10
31秒前
实心球发布了新的文献求助10
31秒前
i学习完成签到,获得积分10
32秒前
Pp完成签到,获得积分10
33秒前
852应助shain采纳,获得10
33秒前
35秒前
HR112应助uh采纳,获得20
38秒前
奋斗的杰发布了新的文献求助10
39秒前
林lin发布了新的文献求助10
42秒前
幸福大白发布了新的文献求助10
44秒前
12544593556发布了新的文献求助10
45秒前
万能图书馆应助study采纳,获得10
45秒前
49秒前
ShowMaker应助机械师简采纳,获得30
49秒前
50秒前
Hello应助Need_Knowledge采纳,获得10
52秒前
Ning发布了新的文献求助10
53秒前
QMCL完成签到,获得积分10
54秒前
小小学神发布了新的文献求助10
55秒前
林lin完成签到,获得积分10
56秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161114
求助须知:如何正确求助?哪些是违规求助? 2812494
关于积分的说明 7895538
捐赠科研通 2471395
什么是DOI,文献DOI怎么找? 1315941
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602103