Contrastive Learning for Signed Bipartite Graphs

二部图 计算机科学 理论计算机科学 稳健性(进化) 有符号图 图形 特征学习 人工智能 生物化学 化学 基因
作者
Zeyu Zhang,Jiamou Liu,Kaiqi Zhao,Song Yang,Xianda Zheng,Yifei Wang
标识
DOI:10.1145/3539618.3591655
摘要

This paper is the first to use contrastive learning to improve the robustness of graph representation learning for signed bipartite graphs, which are commonly found in social networks, recommender systems, and paper review platforms. Existing contrastive learning methods for signed graphs cannot capture implicit relations between nodes of the same type in signed bipartite graphs, which have two types of nodes and edges only connect nodes of different types. We propose a Signed Bipartite Graph Contrastive Learning (SBGCL) method to learn robust node representation while retaining the implicit relations between nodes of the same type. SBGCL augments a signed bipartite graph with a novel two-level graph augmentation method. At the top level, we maintain two perspectives of the signed bipartite graph, one presents the original interactions between nodes of different types, and the other presents the implicit relations between nodes of the same type. At the bottom level, we employ stochastic perturbation strategies to create two perturbed graphs in each perspective. Then, we construct positive and negative samples from the perturbed graphs and design a multi-perspective contrastive loss to unify the node presentations learned from the two perspectives. Results show proposed model is effective over state-of-the-art methods on real-world datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Verity应助YY采纳,获得10
2秒前
123完成签到,获得积分10
2秒前
蓝天应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
外向烤鸡应助科研通管家采纳,获得10
3秒前
Xuezi应助科研通管家采纳,获得10
4秒前
蓝天应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
蓝天应助科研通管家采纳,获得10
4秒前
Zx_1993应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
GE应助科研通管家采纳,获得10
5秒前
zxzxzx应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
6秒前
7秒前
简单又菱发布了新的文献求助10
8秒前
蓝天发布了新的文献求助10
11秒前
住在魔仙堡的鱼完成签到 ,获得积分10
12秒前
要减肥又槐完成签到 ,获得积分10
13秒前
LM完成签到,获得积分10
14秒前
14秒前
mosisa完成签到,获得积分10
16秒前
白凌风完成签到 ,获得积分10
16秒前
16秒前
Jasper应助简单又菱采纳,获得10
17秒前
19秒前
整齐的不评完成签到,获得积分10
19秒前
swimming完成签到 ,获得积分10
19秒前
ayan发布了新的文献求助10
20秒前
zz发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560435
求助须知:如何正确求助?哪些是违规求助? 4645604
关于积分的说明 14675724
捐赠科研通 4586775
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460989