Towards Large-Scale Small Object Detection: Survey and Benchmarks

计算机科学 目标检测 帕斯卡(单位) 标杆管理 卷积神经网络 人工智能 瓶颈 深度学习 比例(比率) 伪装 计算机视觉 机器学习 模式识别(心理学) 地图学 营销 嵌入式系统 业务 程序设计语言 地理
作者
Gong Cheng,Xiang Yuan,Xiwen Yao,Kebing Yan,Qinghua Zeng,Xingxing Xie,Junwei Han
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-20 被引量:288
标识
DOI:10.1109/tpami.2023.3290594
摘要

With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24828 high-quality traffic images and 278433 instances of nine categories. For SODA-A, we harvest 2513 high resolution aerial images and annotate 872069 instances over nine classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助Infinit采纳,获得10
刚刚
Teko发布了新的文献求助10
2秒前
Akim应助油个大饼呜呜呜采纳,获得10
2秒前
chris完成签到,获得积分10
2秒前
FXQ123_范发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
5秒前
5秒前
机灵飞阳发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
斯文败类应助Teko采纳,获得10
9秒前
脑洞疼应助小左采纳,获得10
11秒前
13秒前
嗯嗯发布了新的文献求助10
14秒前
14秒前
浮生发布了新的文献求助10
14秒前
15秒前
Teko完成签到,获得积分10
18秒前
英俊的铭应助程之杭采纳,获得10
18秒前
21秒前
喻义梅发布了新的文献求助10
21秒前
jk发布了新的文献求助10
22秒前
可爱的安萱完成签到,获得积分10
24秒前
orixero应助尼莫采纳,获得10
25秒前
26秒前
泡面完成签到 ,获得积分10
26秒前
26秒前
27秒前
27秒前
JUdy发布了新的文献求助20
28秒前
SYLH应助蓝天白云采纳,获得30
29秒前
受伤邴完成签到 ,获得积分10
30秒前
ZZZ发布了新的文献求助10
30秒前
华仔发布了新的文献求助20
31秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136