计算机科学
目标检测
帕斯卡(单位)
标杆管理
卷积神经网络
人工智能
瓶颈
深度学习
比例(比率)
伪装
计算机视觉
机器学习
模式识别(心理学)
地图学
业务
嵌入式系统
营销
程序设计语言
地理
作者
Gong Cheng,Xiang Yuan,Xiwen Yao,Kebing Yan,Qinghua Zeng,Xingxing Xie,Junwei Han
标识
DOI:10.1109/tpami.2023.3290594
摘要
With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24828 high-quality traffic images and 278433 instances of nine categories. For SODA-A, we harvest 2513 high resolution aerial images and annotate 872069 instances over nine classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field.
科研通智能强力驱动
Strongly Powered by AbleSci AI