Machine Learning Accelerated Discovery of Corrosion-resistant High-entropy Alloys

腐蚀 成形性 高熵合金 材料科学 熵(时间箭头) 随机森林 冶金 机器学习 计算机科学 微观结构 热力学 物理
作者
Zeng, Cheng,Neils, Andrew,Lesko, Jack,Post, Nathan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2307.06384
摘要

Corrosion has a wide impact on society, causing catastrophic damage to structurally engineered components. An emerging class of corrosion-resistant materials are high-entropy alloys. However, high-entropy alloys live in high-dimensional composition and configuration space, making materials designs via experimental trial-and-error or brute-force ab initio calculations almost impossible. Here we develop a physics-informed machine-learning framework to identify corrosion-resistant high-entropy alloys. Three metrics are used to evaluate the corrosion resistance, including single-phase formability, surface energy and Pilling-Bedworth ratios. We used random forest models to predict the single-phase formability, trained on an experimental dataset. Machine learning inter-atomic potentials were employed to calculate surface energies and Pilling-Bedworth ratios, which are trained on first-principles data fast sampled using embedded atom models. A combination of random forest models and high-fidelity machine learning potentials represents the first of its kind to relate chemical compositions to corrosion resistance of high-entropy alloys, paving the way for automatic design of materials with superior corrosion protection. This framework was demonstrated on AlCrFeCoNi high-entropy alloys and we identified composition regions with high corrosion resistance. Machine learning predicted lattice constants and surface energies are consistent with values by first-principles calculations. The predicted single-phase formability and corrosion-resistant compositions of AlCrFeCoNi agree well with experiments. This framework is general in its application and applicable to other materials, enabling high-throughput screening of material candidates and potentially reducing the turnaround time for integrated computational materials engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunzeyi完成签到,获得积分10
刚刚
yu完成签到,获得积分10
1秒前
孟祥勤完成签到,获得积分10
2秒前
铂铑钯钌完成签到,获得积分10
6秒前
cdm700完成签到,获得积分10
7秒前
MMP完成签到,获得积分10
8秒前
11秒前
烟花应助u深度采纳,获得10
12秒前
但是发布了新的文献求助20
14秒前
积极涛完成签到,获得积分10
15秒前
Leung发布了新的文献求助30
16秒前
潜放完成签到,获得积分10
16秒前
16秒前
18秒前
just完成签到,获得积分20
19秒前
北彧发布了新的文献求助10
19秒前
xiaoluuu完成签到 ,获得积分10
20秒前
积极涛发布了新的文献求助10
21秒前
22秒前
12345完成签到,获得积分10
22秒前
just发布了新的文献求助10
23秒前
Sean完成签到,获得积分10
23秒前
但是完成签到,获得积分10
24秒前
领导范儿应助肥逗采纳,获得10
25秒前
画晴完成签到,获得积分10
26秒前
26秒前
李lll发布了新的文献求助10
28秒前
科研通AI2S应助直率千山采纳,获得10
29秒前
精明悟空完成签到,获得积分10
29秒前
我是老大应助高高紫翠采纳,获得10
34秒前
完美世界应助yixia222采纳,获得10
35秒前
setmefree发布了新的文献求助10
37秒前
moonlight完成签到,获得积分10
40秒前
ARIA应助12345采纳,获得20
42秒前
平常的若雁完成签到,获得积分10
45秒前
45秒前
Jasper应助李lll采纳,获得10
46秒前
科目三应助atg采纳,获得10
46秒前
daixan89完成签到,获得积分10
47秒前
47秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140580
求助须知:如何正确求助?哪些是违规求助? 2791382
关于积分的说明 7798832
捐赠科研通 2447736
什么是DOI,文献DOI怎么找? 1302029
科研通“疑难数据库(出版商)”最低求助积分说明 626402
版权声明 601194