Machine Learning Accelerated Discovery of Corrosion-resistant High-entropy Alloys

腐蚀 成形性 高熵合金 材料科学 熵(时间箭头) 随机森林 冶金 机器学习 计算机科学 微观结构 热力学 物理
作者
Zeng, Cheng,Neils, Andrew,Lesko, Jack,Post, Nathan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2307.06384
摘要

Corrosion has a wide impact on society, causing catastrophic damage to structurally engineered components. An emerging class of corrosion-resistant materials are high-entropy alloys. However, high-entropy alloys live in high-dimensional composition and configuration space, making materials designs via experimental trial-and-error or brute-force ab initio calculations almost impossible. Here we develop a physics-informed machine-learning framework to identify corrosion-resistant high-entropy alloys. Three metrics are used to evaluate the corrosion resistance, including single-phase formability, surface energy and Pilling-Bedworth ratios. We used random forest models to predict the single-phase formability, trained on an experimental dataset. Machine learning inter-atomic potentials were employed to calculate surface energies and Pilling-Bedworth ratios, which are trained on first-principles data fast sampled using embedded atom models. A combination of random forest models and high-fidelity machine learning potentials represents the first of its kind to relate chemical compositions to corrosion resistance of high-entropy alloys, paving the way for automatic design of materials with superior corrosion protection. This framework was demonstrated on AlCrFeCoNi high-entropy alloys and we identified composition regions with high corrosion resistance. Machine learning predicted lattice constants and surface energies are consistent with values by first-principles calculations. The predicted single-phase formability and corrosion-resistant compositions of AlCrFeCoNi agree well with experiments. This framework is general in its application and applicable to other materials, enabling high-throughput screening of material candidates and potentially reducing the turnaround time for integrated computational materials engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
黑魔仙完成签到,获得积分10
1秒前
sugar完成签到,获得积分10
2秒前
2秒前
3秒前
1107任务报告完成签到,获得积分10
3秒前
xie123完成签到,获得积分20
4秒前
5秒前
静静发布了新的文献求助10
5秒前
上官若男应助开花开花采纳,获得10
8秒前
9秒前
liujizhuo发布了新的文献求助10
9秒前
杨冰发布了新的文献求助10
13秒前
小小鱼完成签到,获得积分10
15秒前
Zed发布了新的文献求助10
16秒前
imomoe完成签到,获得积分0
17秒前
JAsoli发布了新的文献求助10
17秒前
12340055d完成签到,获得积分20
18秒前
茯苓发布了新的文献求助10
19秒前
曼波完成签到,获得积分10
19秒前
gh完成签到,获得积分10
22秒前
南宫丽完成签到 ,获得积分10
23秒前
田様应助静静采纳,获得10
24秒前
优雅的母鸡完成签到,获得积分10
24秒前
25秒前
gh发布了新的文献求助10
25秒前
liujizhuo完成签到,获得积分20
27秒前
27秒前
28秒前
田様应助shinn采纳,获得10
28秒前
齐俞如完成签到,获得积分10
29秒前
LIU发布了新的文献求助50
29秒前
30秒前
30秒前
VDV完成签到,获得积分10
31秒前
32秒前
啃猫爪发布了新的文献求助10
34秒前
35秒前
35秒前
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967219
求助须知:如何正确求助?哪些是违规求助? 3512559
关于积分的说明 11164121
捐赠科研通 3247452
什么是DOI,文献DOI怎么找? 1793849
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804494