Machine Learning Accelerated Discovery of Corrosion-resistant High-entropy Alloys

腐蚀 成形性 高熵合金 材料科学 熵(时间箭头) 随机森林 冶金 机器学习 计算机科学 微观结构 热力学 物理
作者
Zeng, Cheng,Neils, Andrew,Lesko, Jack,Post, Nathan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2307.06384
摘要

Corrosion has a wide impact on society, causing catastrophic damage to structurally engineered components. An emerging class of corrosion-resistant materials are high-entropy alloys. However, high-entropy alloys live in high-dimensional composition and configuration space, making materials designs via experimental trial-and-error or brute-force ab initio calculations almost impossible. Here we develop a physics-informed machine-learning framework to identify corrosion-resistant high-entropy alloys. Three metrics are used to evaluate the corrosion resistance, including single-phase formability, surface energy and Pilling-Bedworth ratios. We used random forest models to predict the single-phase formability, trained on an experimental dataset. Machine learning inter-atomic potentials were employed to calculate surface energies and Pilling-Bedworth ratios, which are trained on first-principles data fast sampled using embedded atom models. A combination of random forest models and high-fidelity machine learning potentials represents the first of its kind to relate chemical compositions to corrosion resistance of high-entropy alloys, paving the way for automatic design of materials with superior corrosion protection. This framework was demonstrated on AlCrFeCoNi high-entropy alloys and we identified composition regions with high corrosion resistance. Machine learning predicted lattice constants and surface energies are consistent with values by first-principles calculations. The predicted single-phase formability and corrosion-resistant compositions of AlCrFeCoNi agree well with experiments. This framework is general in its application and applicable to other materials, enabling high-throughput screening of material candidates and potentially reducing the turnaround time for integrated computational materials engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
健壮的蘑菇完成签到,获得积分10
刚刚
赘婿应助泷生采纳,获得10
1秒前
TT发布了新的文献求助10
2秒前
荷兰香猪完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
qiqiqi发布了新的文献求助30
4秒前
5秒前
希望天下0贩的0应助呼呼采纳,获得10
5秒前
顾矜应助默默的晓兰采纳,获得10
5秒前
kks569发布了新的文献求助10
6秒前
大团子发布了新的文献求助10
6秒前
科研通AI6应助迫切采纳,获得10
6秒前
7秒前
科研通AI6应助寒冷的箴采纳,获得10
7秒前
7秒前
破绽发布了新的文献求助10
7秒前
7秒前
大气的身影完成签到,获得积分20
7秒前
8秒前
桐桐应助星辰采纳,获得10
8秒前
科研通AI2S应助ARIA采纳,获得10
8秒前
lanlanlan完成签到 ,获得积分10
9秒前
dyyisash完成签到 ,获得积分10
10秒前
gwentea发布了新的文献求助10
10秒前
ll发布了新的文献求助10
10秒前
吃货发布了新的文献求助10
11秒前
liuyingke完成签到,获得积分10
11秒前
11秒前
科研通AI6应助Drjason采纳,获得10
11秒前
荷珠发布了新的文献求助30
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
Akim应助yan采纳,获得10
13秒前
13秒前
fang完成签到 ,获得积分10
14秒前
浅风发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901