Citrus pose estimation from an RGB image for automated harvesting

人工智能 旋转(数学) 果园 计算机科学 计算机视觉 姿势 RGB颜色模型 字错误率 数学 模式识别(心理学) 园艺 生物
作者
Qixin Sun,Ming Zhong,Xiujuan Chai,Zhikang Zeng,Hesheng Yin,Guomin Zhou,Tan Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:211: 108022-108022 被引量:14
标识
DOI:10.1016/j.compag.2023.108022
摘要

Automated fruit harvesting is promising research in the development of agricultural modernization. However, the complex and non-structural orchard environment is extremely challenging. In order to meet the needs of different end-effectors and to improve the success rate of automatic fruit harvesting, it is critical to perform fruit pose estimation before picking operations. In this study, a citrus pose estimation method through a single RGB image is introduced. The rotation of the citrus pose is defined as a vector that passes through the center of the fruit, which is perpendicular to the plane where the fruit navel point is located. Simply speaking, a multi-task learning model named FPENet is proposed to simultaneously locate the fruit navel point and predict the fruit rotation vector. And a hyperparameter is introduced in the loss function to achieve the simultaneous convergence of multiple tasks. In addition, this paper designs a 2D image annotation tool and constructs a citrus pose dataset, which contributes to model training and also the algorithm evaluation. In the experiment, we evaluate and analyze each module of the proposed network structure, and verify its performance on a harvesting robot. The experimental results show that the FPENet achieves an 88.92 AP score on fruit navel point detection, and 11.13° on the average error of the rotation vector. Over 90% of rotation vectors have an angular error of less than 22.5°. The harvesting success rate is 79.79%. This study offers a new idea for fruit pose estimation and provides the possibility and foundation for estimating fruit pose with a 2D image input.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大的羿完成签到,获得积分10
刚刚
1秒前
欢欢发布了新的文献求助10
1秒前
无花果应助ctttt采纳,获得10
1秒前
彭于晏应助苹果绿采纳,获得10
1秒前
Hello应助哭泣的书兰采纳,获得10
2秒前
蓝天应助滑腻腻的小鱼采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
chen完成签到,获得积分20
3秒前
3秒前
思源应助sky采纳,获得10
4秒前
4秒前
九bai发布了新的文献求助10
4秒前
xuxugogo完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
现代小丸子完成签到 ,获得积分10
6秒前
fff完成签到,获得积分10
6秒前
6秒前
6秒前
精明寒松发布了新的文献求助10
6秒前
6秒前
7秒前
猫尔儿发布了新的文献求助10
7秒前
7秒前
111222发布了新的文献求助10
7秒前
7秒前
7秒前
国宝发布了新的文献求助10
8秒前
chen发布了新的文献求助10
8秒前
勤劳的斑马完成签到,获得积分10
8秒前
丘比特应助吴兴倩采纳,获得10
8秒前
能干雁凡发布了新的文献求助20
8秒前
9秒前
9秒前
cckk完成签到,获得积分10
9秒前
杨佳莉发布了新的文献求助20
9秒前
执着的白云关注了科研通微信公众号
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210