Citrus pose estimation from an RGB image for automated harvesting

人工智能 旋转(数学) 果园 计算机科学 计算机视觉 姿势 RGB颜色模型 字错误率 数学 模式识别(心理学) 园艺 生物
作者
Qixin Sun,Ming Zhong,Xiujuan Chai,Zhikang Zeng,Hesheng Yin,Guomin Zhou,Tan Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:211: 108022-108022 被引量:14
标识
DOI:10.1016/j.compag.2023.108022
摘要

Automated fruit harvesting is promising research in the development of agricultural modernization. However, the complex and non-structural orchard environment is extremely challenging. In order to meet the needs of different end-effectors and to improve the success rate of automatic fruit harvesting, it is critical to perform fruit pose estimation before picking operations. In this study, a citrus pose estimation method through a single RGB image is introduced. The rotation of the citrus pose is defined as a vector that passes through the center of the fruit, which is perpendicular to the plane where the fruit navel point is located. Simply speaking, a multi-task learning model named FPENet is proposed to simultaneously locate the fruit navel point and predict the fruit rotation vector. And a hyperparameter is introduced in the loss function to achieve the simultaneous convergence of multiple tasks. In addition, this paper designs a 2D image annotation tool and constructs a citrus pose dataset, which contributes to model training and also the algorithm evaluation. In the experiment, we evaluate and analyze each module of the proposed network structure, and verify its performance on a harvesting robot. The experimental results show that the FPENet achieves an 88.92 AP score on fruit navel point detection, and 11.13° on the average error of the rotation vector. Over 90% of rotation vectors have an angular error of less than 22.5°. The harvesting success rate is 79.79%. This study offers a new idea for fruit pose estimation and provides the possibility and foundation for estimating fruit pose with a 2D image input.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰灰发布了新的文献求助10
刚刚
阳光蓉完成签到,获得积分10
刚刚
xxxidgkris发布了新的文献求助30
刚刚
叮当喵发布了新的文献求助10
1秒前
打打应助Roxie采纳,获得30
1秒前
123发布了新的文献求助10
1秒前
crystal完成签到,获得积分10
1秒前
upupup完成签到,获得积分10
1秒前
1秒前
鱼柒完成签到,获得积分10
2秒前
珊明治完成签到,获得积分10
2秒前
mmol发布了新的文献求助10
3秒前
3秒前
露露发布了新的文献求助10
3秒前
3秒前
向向完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
Wangjingxuan完成签到,获得积分10
4秒前
kuyng发布了新的文献求助10
4秒前
清爽的新瑶完成签到,获得积分10
4秒前
磨磨完成签到,获得积分10
5秒前
科研通AI6应助碧蓝之柔采纳,获得10
5秒前
5秒前
慕青应助我是狗采纳,获得10
5秒前
6秒前
研友_QLXagn发布了新的文献求助10
6秒前
6秒前
6秒前
隐形的谷槐完成签到 ,获得积分10
7秒前
7秒前
DreamSeker8发布了新的文献求助10
8秒前
奋斗发布了新的文献求助10
8秒前
8秒前
天真百招发布了新的文献求助10
9秒前
夕荀发布了新的文献求助10
9秒前
李小新完成签到 ,获得积分10
9秒前
言诚开发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608584
求助须知:如何正确求助?哪些是违规求助? 4693308
关于积分的说明 14877618
捐赠科研通 4718061
什么是DOI,文献DOI怎么找? 2544332
邀请新用户注册赠送积分活动 1509463
关于科研通互助平台的介绍 1472844