亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Citrus pose estimation from an RGB image for automated harvesting

人工智能 旋转(数学) 果园 计算机科学 计算机视觉 姿势 RGB颜色模型 字错误率 数学 模式识别(心理学) 园艺 生物
作者
Qixin Sun,Ming Zhong,Xiujuan Chai,Zhikang Zeng,Hesheng Yin,Guomin Zhou,Tan Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:211: 108022-108022 被引量:14
标识
DOI:10.1016/j.compag.2023.108022
摘要

Automated fruit harvesting is promising research in the development of agricultural modernization. However, the complex and non-structural orchard environment is extremely challenging. In order to meet the needs of different end-effectors and to improve the success rate of automatic fruit harvesting, it is critical to perform fruit pose estimation before picking operations. In this study, a citrus pose estimation method through a single RGB image is introduced. The rotation of the citrus pose is defined as a vector that passes through the center of the fruit, which is perpendicular to the plane where the fruit navel point is located. Simply speaking, a multi-task learning model named FPENet is proposed to simultaneously locate the fruit navel point and predict the fruit rotation vector. And a hyperparameter is introduced in the loss function to achieve the simultaneous convergence of multiple tasks. In addition, this paper designs a 2D image annotation tool and constructs a citrus pose dataset, which contributes to model training and also the algorithm evaluation. In the experiment, we evaluate and analyze each module of the proposed network structure, and verify its performance on a harvesting robot. The experimental results show that the FPENet achieves an 88.92 AP score on fruit navel point detection, and 11.13° on the average error of the rotation vector. Over 90% of rotation vectors have an angular error of less than 22.5°. The harvesting success rate is 79.79%. This study offers a new idea for fruit pose estimation and provides the possibility and foundation for estimating fruit pose with a 2D image input.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
FashionBoy应助guhuihaozi采纳,获得10
1分钟前
zzz完成签到,获得积分10
1分钟前
深情安青应助Dreamer.采纳,获得10
1分钟前
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
伏城完成签到 ,获得积分10
1分钟前
共享精神应助王大纯采纳,获得10
2分钟前
王大纯完成签到,获得积分20
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
Dreamer.发布了新的文献求助10
2分钟前
汉堡包应助科研实习生采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
牛八先生完成签到,获得积分10
3分钟前
烟花应助Dreamer.采纳,获得10
3分钟前
Asura完成签到,获得积分10
3分钟前
3分钟前
RR发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
馆长应助科研通管家采纳,获得10
3分钟前
馆长应助科研通管家采纳,获得10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
科研通AI6应助哈哈哈采纳,获得10
3分钟前
RR完成签到,获得积分10
3分钟前
3分钟前
Hodlumm发布了新的文献求助10
3分钟前
哈哈哈发布了新的文献求助10
4分钟前
4分钟前
4分钟前
无产阶级科学者完成签到,获得积分10
4分钟前
云梦完成签到,获得积分10
4分钟前
Dreamer.发布了新的文献求助10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595660
求助须知:如何正确求助?哪些是违规求助? 4007972
关于积分的说明 12408710
捐赠科研通 3686659
什么是DOI,文献DOI怎么找? 2032005
邀请新用户注册赠送积分活动 1065231
科研通“疑难数据库(出版商)”最低求助积分说明 950587