Deep Learning-Based TEM Image Analysis for Fully Automated Detection of Gold Nanoparticles Internalized Within Tumor Cell

阈值 人工智能 胶体金 深度学习 计算机科学 F1得分 交叉口(航空) 纳米颗粒 学习迁移 模式识别(心理学) 图像(数学) 材料科学 纳米技术 工程类 航空航天工程
作者
Amrit Kaphle,Sandun Jayarathna,Hem Moktan,Maureen Aliru,Subhiksha Raghuram,Sunil Krishnan,Sang Hyun Cho
出处
期刊:Microscopy and Microanalysis [Cambridge University Press]
卷期号:29 (4): 1474-1487
标识
DOI:10.1093/micmic/ozad066
摘要

Transmission electron microscopy (TEM) imaging can be used for detection/localization of gold nanoparticles (GNPs) within tumor cells. However, quantitative analysis of GNP-containing cellular TEM images typically relies on conventional/thresholding-based methods, which are manual, time-consuming, and prone to human errors. In this study, therefore, deep learning (DL)-based methods were developed for fully automated detection of GNPs from cellular TEM images. Several models of "you only look once (YOLO)" v5 were implemented, with a few adjustments to enhance the model's performance by applying the transfer learning approach, adjusting the size of the input image, and choosing the best optimization algorithm. Seventy-eight original (12,040 augmented) TEM images of GNP-laden tumor cells were used for model implementation and validation. A maximum F1 score (harmonic mean of the precision and recall) of 0.982 was achieved by the best-trained models, while mean average precision was 0.989 and 0.843 at 0.50 and 0.50-0.95 intersection over union threshold, respectively. These results suggested the developed DL-based approach was capable of precisely estimating the number/position of internalized GNPs from cellular TEM images. A novel DL-based TEM image analysis tool from this study will benefit research/development efforts on GNP-based cancer therapeutics, for example, by enabling the modeling of GNP-laden tumor cells using nanometer-resolution TEM images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
子彧完成签到,获得积分10
1秒前
机灵的妙芹关注了科研通微信公众号
1秒前
大马哈鱼发布了新的文献求助10
2秒前
啊哈发布了新的文献求助10
2秒前
gsd发布了新的文献求助10
2秒前
张医生完成签到,获得积分10
2秒前
2秒前
一刀发布了新的文献求助10
2秒前
奥莉奥发布了新的文献求助10
3秒前
2025完成签到,获得积分20
3秒前
赘婿应助nightgaunt采纳,获得10
3秒前
3秒前
子彧发布了新的文献求助10
3秒前
4秒前
4秒前
晨枫发布了新的文献求助10
4秒前
李健应助liyifan采纳,获得10
4秒前
李健的小迷弟应助Taniiyn采纳,获得10
5秒前
lwq发布了新的文献求助80
5秒前
5秒前
科研通AI6应助麦麦脆汁猪采纳,获得10
5秒前
JamesPei应助李佳轩采纳,获得10
5秒前
6秒前
6秒前
蟹黄的店发布了新的文献求助10
6秒前
wudizhuzhu233完成签到,获得积分10
6秒前
czb666发布了新的文献求助10
6秒前
CodeCraft应助哇owao采纳,获得10
7秒前
xiaop完成签到,获得积分20
7秒前
Zbmd应助2248388622采纳,获得10
7秒前
SciGPT应助ZH的天方夜谭采纳,获得10
7秒前
7秒前
7秒前
浮游应助leeyu采纳,获得10
7秒前
8秒前
清风与你2完成签到,获得积分10
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546153
求助须知:如何正确求助?哪些是违规求助? 4631960
关于积分的说明 14624094
捐赠科研通 4573677
什么是DOI,文献DOI怎么找? 2507699
邀请新用户注册赠送积分活动 1484361
关于科研通互助平台的介绍 1455656