Deep Learning-Based TEM Image Analysis for Fully Automated Detection of Gold Nanoparticles Internalized Within Tumor Cell

阈值 人工智能 胶体金 深度学习 计算机科学 F1得分 交叉口(航空) 纳米颗粒 学习迁移 模式识别(心理学) 图像(数学) 材料科学 纳米技术 工程类 航空航天工程
作者
Amrit Kaphle,Sandun Jayarathna,Hem Moktan,Maureen Aliru,Subhiksha Raghuram,Sunil Krishnan,Sang Hyun Cho
出处
期刊:Microscopy and Microanalysis [Oxford University Press]
卷期号:29 (4): 1474-1487
标识
DOI:10.1093/micmic/ozad066
摘要

Transmission electron microscopy (TEM) imaging can be used for detection/localization of gold nanoparticles (GNPs) within tumor cells. However, quantitative analysis of GNP-containing cellular TEM images typically relies on conventional/thresholding-based methods, which are manual, time-consuming, and prone to human errors. In this study, therefore, deep learning (DL)-based methods were developed for fully automated detection of GNPs from cellular TEM images. Several models of "you only look once (YOLO)" v5 were implemented, with a few adjustments to enhance the model's performance by applying the transfer learning approach, adjusting the size of the input image, and choosing the best optimization algorithm. Seventy-eight original (12,040 augmented) TEM images of GNP-laden tumor cells were used for model implementation and validation. A maximum F1 score (harmonic mean of the precision and recall) of 0.982 was achieved by the best-trained models, while mean average precision was 0.989 and 0.843 at 0.50 and 0.50-0.95 intersection over union threshold, respectively. These results suggested the developed DL-based approach was capable of precisely estimating the number/position of internalized GNPs from cellular TEM images. A novel DL-based TEM image analysis tool from this study will benefit research/development efforts on GNP-based cancer therapeutics, for example, by enabling the modeling of GNP-laden tumor cells using nanometer-resolution TEM images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助Leeie03采纳,获得10
1秒前
2秒前
3秒前
4秒前
4秒前
伯赏觅翠完成签到 ,获得积分10
4秒前
4秒前
wzc完成签到,获得积分10
4秒前
双楠应助朱马大采纳,获得10
5秒前
5秒前
hyf发布了新的文献求助10
6秒前
幸福大白发布了新的文献求助10
7秒前
7秒前
zyw发布了新的文献求助10
7秒前
五六七发布了新的文献求助10
9秒前
闾丘剑封发布了新的文献求助10
9秒前
可爱的函函应助小晓采纳,获得10
12秒前
Owen应助SciEngineerX采纳,获得10
12秒前
幸福大白发布了新的文献求助30
13秒前
内向寒云完成签到,获得积分10
15秒前
CipherSage应助DC采纳,获得10
15秒前
淡然的花卷完成签到,获得积分10
16秒前
18秒前
无语的不言完成签到,获得积分20
19秒前
19秒前
慕青应助lzx采纳,获得10
20秒前
20秒前
20秒前
Orange应助欧耶采纳,获得10
21秒前
21秒前
21秒前
yyyyyyy完成签到,获得积分10
23秒前
SciEngineerX发布了新的文献求助10
24秒前
木木完成签到,获得积分10
24秒前
啧啧啧发布了新的文献求助10
25秒前
研友_VZG7GZ应助33采纳,获得30
25秒前
yyyyyyy发布了新的文献求助10
26秒前
26秒前
禹代秋发布了新的文献求助10
27秒前
杰2580发布了新的文献求助10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989450
求助须知:如何正确求助?哪些是违规求助? 3531621
关于积分的说明 11254315
捐赠科研通 3270207
什么是DOI,文献DOI怎么找? 1804928
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809176