重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Deep Learning-Based TEM Image Analysis for Fully Automated Detection of Gold Nanoparticles Internalized Within Tumor Cell

阈值 人工智能 胶体金 深度学习 计算机科学 F1得分 交叉口(航空) 纳米颗粒 学习迁移 模式识别(心理学) 图像(数学) 材料科学 纳米技术 工程类 航空航天工程
作者
Amrit Kaphle,Sandun Jayarathna,Hem Moktan,Maureen Aliru,Subhiksha Raghuram,Sunil Krishnan,Sang Hyun Cho
出处
期刊:Microscopy and Microanalysis [Cambridge University Press]
卷期号:29 (4): 1474-1487
标识
DOI:10.1093/micmic/ozad066
摘要

Transmission electron microscopy (TEM) imaging can be used for detection/localization of gold nanoparticles (GNPs) within tumor cells. However, quantitative analysis of GNP-containing cellular TEM images typically relies on conventional/thresholding-based methods, which are manual, time-consuming, and prone to human errors. In this study, therefore, deep learning (DL)-based methods were developed for fully automated detection of GNPs from cellular TEM images. Several models of "you only look once (YOLO)" v5 were implemented, with a few adjustments to enhance the model's performance by applying the transfer learning approach, adjusting the size of the input image, and choosing the best optimization algorithm. Seventy-eight original (12,040 augmented) TEM images of GNP-laden tumor cells were used for model implementation and validation. A maximum F1 score (harmonic mean of the precision and recall) of 0.982 was achieved by the best-trained models, while mean average precision was 0.989 and 0.843 at 0.50 and 0.50-0.95 intersection over union threshold, respectively. These results suggested the developed DL-based approach was capable of precisely estimating the number/position of internalized GNPs from cellular TEM images. A novel DL-based TEM image analysis tool from this study will benefit research/development efforts on GNP-based cancer therapeutics, for example, by enabling the modeling of GNP-laden tumor cells using nanometer-resolution TEM images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sdd完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
huangjixiang发布了新的文献求助10
刚刚
饭饭大王发布了新的文献求助10
1秒前
疯狂硕士完成签到,获得积分20
1秒前
1秒前
张毅德完成签到 ,获得积分10
1秒前
大方友菱关注了科研通微信公众号
1秒前
聪明天玉完成签到,获得积分10
1秒前
2秒前
赘婿应助眯眯眼的枕头采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
Nano完成签到,获得积分10
4秒前
丘比特应助安静的寒蕾采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
文静从雪完成签到,获得积分10
6秒前
许小六发布了新的文献求助10
6秒前
6秒前
6秒前
科研通AI6应助酷炫的语梦采纳,获得10
6秒前
共享精神应助黎黎采纳,获得10
6秒前
Steplan完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
甲虫完成签到,获得积分10
7秒前
活泼白山完成签到 ,获得积分10
7秒前
7秒前
8秒前
25完成签到 ,获得积分10
8秒前
科研通AI2S应助马伊采纳,获得10
8秒前
逗逗完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567