Deep Learning-Based TEM Image Analysis for Fully Automated Detection of Gold Nanoparticles Internalized Within Tumor Cell

阈值 人工智能 胶体金 深度学习 计算机科学 F1得分 交叉口(航空) 纳米颗粒 学习迁移 模式识别(心理学) 图像(数学) 材料科学 纳米技术 工程类 航空航天工程
作者
Amrit Kaphle,Sandun Jayarathna,Hem Moktan,Maureen Aliru,Subhiksha Raghuram,Sunil Krishnan,Sang Hyun Cho
出处
期刊:Microscopy and Microanalysis [Oxford University Press]
卷期号:29 (4): 1474-1487
标识
DOI:10.1093/micmic/ozad066
摘要

Transmission electron microscopy (TEM) imaging can be used for detection/localization of gold nanoparticles (GNPs) within tumor cells. However, quantitative analysis of GNP-containing cellular TEM images typically relies on conventional/thresholding-based methods, which are manual, time-consuming, and prone to human errors. In this study, therefore, deep learning (DL)-based methods were developed for fully automated detection of GNPs from cellular TEM images. Several models of "you only look once (YOLO)" v5 were implemented, with a few adjustments to enhance the model's performance by applying the transfer learning approach, adjusting the size of the input image, and choosing the best optimization algorithm. Seventy-eight original (12,040 augmented) TEM images of GNP-laden tumor cells were used for model implementation and validation. A maximum F1 score (harmonic mean of the precision and recall) of 0.982 was achieved by the best-trained models, while mean average precision was 0.989 and 0.843 at 0.50 and 0.50-0.95 intersection over union threshold, respectively. These results suggested the developed DL-based approach was capable of precisely estimating the number/position of internalized GNPs from cellular TEM images. A novel DL-based TEM image analysis tool from this study will benefit research/development efforts on GNP-based cancer therapeutics, for example, by enabling the modeling of GNP-laden tumor cells using nanometer-resolution TEM images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今天只做一件事完成签到,获得积分0
刚刚
PSC完成签到,获得积分10
1秒前
eueurhj发布了新的文献求助30
1秒前
小二郎应助迪克牛仔采纳,获得10
2秒前
一直向前发布了新的文献求助10
3秒前
明芬完成签到,获得积分10
6秒前
7秒前
123456完成签到,获得积分10
10秒前
结实的慕凝完成签到,获得积分10
12秒前
苗条小土豆完成签到,获得积分10
12秒前
flance完成签到 ,获得积分10
14秒前
15秒前
fanfan完成签到 ,获得积分10
17秒前
SkyTsai完成签到,获得积分10
17秒前
20秒前
21秒前
轻松的惜芹应助诚心谷南采纳,获得10
21秒前
天天快乐应助sml采纳,获得10
22秒前
24秒前
25秒前
25秒前
华仔应助sxx采纳,获得10
28秒前
YJ888发布了新的文献求助10
29秒前
30秒前
哼哼唧唧发布了新的文献求助10
30秒前
石大大发布了新的文献求助10
32秒前
huoguo完成签到,获得积分10
33秒前
小二郎应助完美芒果采纳,获得10
33秒前
Liufgui应助紫竹魔笛采纳,获得10
35秒前
36秒前
38秒前
Liufgui应助YJ888采纳,获得10
39秒前
赘婿应助麦子采纳,获得10
39秒前
40秒前
KK发布了新的文献求助10
40秒前
娟姐完成签到,获得积分10
41秒前
ding应助李朝富采纳,获得10
42秒前
桐桐应助学术蝗虫采纳,获得10
43秒前
杨桃发布了新的文献求助10
43秒前
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176