Deep Learning-Based TEM Image Analysis for Fully Automated Detection of Gold Nanoparticles Internalized Within Tumor Cell

阈值 人工智能 胶体金 深度学习 计算机科学 F1得分 交叉口(航空) 纳米颗粒 学习迁移 模式识别(心理学) 图像(数学) 材料科学 纳米技术 工程类 航空航天工程
作者
Amrit Kaphle,Sandun Jayarathna,Hem Moktan,Maureen Aliru,Subhiksha Raghuram,Sunil Krishnan,Sang Hyun Cho
出处
期刊:Microscopy and Microanalysis [Cambridge University Press]
卷期号:29 (4): 1474-1487
标识
DOI:10.1093/micmic/ozad066
摘要

Transmission electron microscopy (TEM) imaging can be used for detection/localization of gold nanoparticles (GNPs) within tumor cells. However, quantitative analysis of GNP-containing cellular TEM images typically relies on conventional/thresholding-based methods, which are manual, time-consuming, and prone to human errors. In this study, therefore, deep learning (DL)-based methods were developed for fully automated detection of GNPs from cellular TEM images. Several models of "you only look once (YOLO)" v5 were implemented, with a few adjustments to enhance the model's performance by applying the transfer learning approach, adjusting the size of the input image, and choosing the best optimization algorithm. Seventy-eight original (12,040 augmented) TEM images of GNP-laden tumor cells were used for model implementation and validation. A maximum F1 score (harmonic mean of the precision and recall) of 0.982 was achieved by the best-trained models, while mean average precision was 0.989 and 0.843 at 0.50 and 0.50-0.95 intersection over union threshold, respectively. These results suggested the developed DL-based approach was capable of precisely estimating the number/position of internalized GNPs from cellular TEM images. A novel DL-based TEM image analysis tool from this study will benefit research/development efforts on GNP-based cancer therapeutics, for example, by enabling the modeling of GNP-laden tumor cells using nanometer-resolution TEM images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flyflyfly发布了新的文献求助10
刚刚
隐形曼青应助迎风映雪采纳,获得10
刚刚
1秒前
任寒松发布了新的文献求助20
1秒前
量子星尘发布了新的文献求助10
1秒前
柚米完成签到,获得积分10
1秒前
ZeKaWa应助11采纳,获得10
2秒前
科研通AI6应助魏阳宇采纳,获得10
2秒前
2秒前
3秒前
3秒前
SciGPT应助晰默采纳,获得10
4秒前
徐5V发布了新的文献求助10
4秒前
jun完成签到 ,获得积分10
4秒前
耍酷蝴蝶完成签到,获得积分10
4秒前
5秒前
王晓完成签到,获得积分10
5秒前
5秒前
5秒前
风吹麦田应助qww采纳,获得20
5秒前
6秒前
搞怪擎完成签到,获得积分10
7秒前
李健应助小七采纳,获得10
7秒前
7秒前
7秒前
7秒前
哈哈完成签到,获得积分10
7秒前
打打应助丰收喵采纳,获得10
8秒前
123bella123发布了新的文献求助10
8秒前
旋风大普忒头战神完成签到 ,获得积分10
8秒前
8秒前
8秒前
lucky发布了新的文献求助30
9秒前
9秒前
9秒前
Cast_Lappland发布了新的文献求助10
9秒前
10秒前
Lucas应助LLL采纳,获得10
10秒前
张蕊发布了新的文献求助10
11秒前
可爱的函函应助流逝采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721