已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Inventory management for stockout-based substitutable products under centralised and competitive settings

缺货 库存管理 业务 利润(经济学) 永续盘存 库存(枪支) 经济订货量 产品(数学) 订单(交换) 存货理论 营销 供应链 微观经济学 经济 运营管理 工程类 机械工程 数学 财务 几何学
作者
Michal Koren,‪Yael Perlman‬‏,Matan Shnaiderman
出处
期刊:International Journal of Production Research [Informa]
卷期号:62 (9): 3176-3192 被引量:2
标识
DOI:10.1080/00207543.2023.2222186
摘要

AbstractInventory planning in fashion markets is highly challenging, owing to uncertain demand; yet, in making inventory decisions, retailers may be able to capitalise on high substitutability between products. This research develops single-period inventory-management models describing a market with two substitutable products, under stockout-based substitution; i.e. when a customer's preferred product is out-of-stock, s/he may choose to purchase the substitute. Two settings are considered: centralised (a single retailer who sells both products) and competitive (two retailers, each selling one product). For each setting, we derive closed-form analytical solutions for the inventory levels that maximise expected profit. The model is further enriched with sales data from an online apparel retailer offering substitutable products (a sneaker in different colours), and we analyse the sensitivity of the optimal inventory levels and profits to parameter values. Key findings include the following: (i) Under competitive conditions, both retailers always order positive inventory so as not to lose customers. However, in a single-retailer setting, there are situations in which the retailer orders inventory for only one product. (ii) The optimal inventory levels and corresponding profits are highly sensitive to consumers' willingness to substitute between products. These findings provide concrete insights that can guide fashion brands' inventory-management decisions.KEYWORDS: Inventory managementstockout-based substitutionfashion industrygame theorysupply chain management AcknowledgementsThe authors would like to thank Isaac Meilijson for his help in estimating the joint demand and the three anonymous reviewers for their constructive comments and suggestions which have significantly improved the paper.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementData available on request from the authors.Additional informationFundingThis research was partially supported by the Israel Science Foundation (grant number 1898/21).Notes on contributorsMichal KorenMichal Koren holds a Ph.D. and an M.A. in Industrial Management, both from the Department of Management, Bar-Ilan University in Israel, and a B.Sc. in Industrial Engineering and Management from Shenkar- Engineering. Design. Art. Currently, she is a faculty member and deputy dean at the School of Industrial Engineering and Management at Shenkar- Engineering. Design. Art. Her research interests include Operations Research, Supply Chain, Machine Learning and Artificial Intelligence.Yael PerlmanYael Perlman is an Associate Professor of Operations Management in the Department of Management at Bar-Ilan University, Israel. She holds a BSc in Mathematics (TAU) an MBA in Operations Research (TAU) and a PhD in Industrial Engineering (BGU). Yael Perlman develops game theory-based models and queuing theory-based models to investigate strategic decisions of the supply chain members and the effect of intra-supply chain competition on the overall supply chain performance. Her papers have been published in some of the leading journals of Supply Chain Management and Operations Management.Matan ShnaidermanMatan Shnaiderman received M.S. and Ph.D. degrees in the Department of Mathematics, Bar-Ilan University in Israel. He is currently Senior Lecturer at the Department of Management, Bar-Ilan University. His research interests include supply-chain and inventory management, information sharing, public transit, frequency setting, energy production and stochastic dynamic programming.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冯露瑶发布了新的文献求助10
2秒前
4秒前
方盒完成签到 ,获得积分10
4秒前
5秒前
哈哈哈哈完成签到,获得积分10
7秒前
YZ完成签到,获得积分10
7秒前
曾经山灵完成签到 ,获得积分10
7秒前
细心的山槐完成签到,获得积分10
8秒前
彭于晏应助直率的菠萝采纳,获得10
8秒前
二中所长完成签到,获得积分10
11秒前
冯露瑶完成签到,获得积分20
11秒前
lyy发布了新的文献求助10
11秒前
李锐驳回了Lucas应助
13秒前
静谧180完成签到 ,获得积分10
13秒前
15秒前
18秒前
18秒前
所所应助kento采纳,获得30
19秒前
Orange应助科研通管家采纳,获得10
20秒前
BowieHuang应助科研通管家采纳,获得10
20秒前
fxfcpu发布了新的文献求助10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
fiife应助科研通管家采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
烟花应助科研通管家采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
21秒前
英姑应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
李健应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
lanxinyue发布了新的文献求助10
23秒前
曾经山灵发布了新的文献求助10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599471
求助须知:如何正确求助?哪些是违规求助? 4685106
关于积分的说明 14837681
捐赠科研通 4668281
什么是DOI,文献DOI怎么找? 2537976
邀请新用户注册赠送积分活动 1505410
关于科研通互助平台的介绍 1470783