An unsupervised two‐step training framework for low‐dose computed tomography denoising

人工智能 降噪 成像体模 计算机科学 深度学习 卷积神经网络 噪音(视频) 医学影像学 模式识别(心理学) 人工神经网络 图像质量 迭代重建 计算机断层摄影术 计算机视觉 机器学习 图像(数学) 核医学 放射科 医学
作者
Won-Jin Kim,Jaayeon Lee,Jang-Hwan Choi
出处
期刊:Medical Physics [Wiley]
被引量:1
标识
DOI:10.1002/mp.16628
摘要

Although low-dose computed tomography (CT) imaging has been more widely adopted in clinical practice to reduce radiation exposure to patients, the reconstructed CT images tend to have more noise, which impedes accurate diagnosis. Recently, deep neural networks using convolutional neural networks to reduce noise in the reconstructed low-dose CT images have shown considerable improvement. However, they need a large number of paired normal- and low-dose CT images to fully train the network via supervised learning methods.To propose an unsupervised two-step training framework for image denoising that uses low-dose CT images of one dataset and unpaired high-dose CT images from another dataset.Our proposed framework trains the denoising network in two steps. In the first training step, we train the network using 3D volumes of CT images and predict the center CT slice from them. This pre-trained network is used in the second training step to train the denoising network and is combined with the memory-efficient denoising generative adversarial network (DenoisingGAN), which further enhances both objective and perceptual quality.The experimental results on phantom and clinical datasets show superior performance over the existing traditional machine learning and self-supervised deep learning methods, and the results are comparable to the fully supervised learning methods.We proposed a new unsupervised learning framework for low-dose CT denoising, convincingly improving noisy CT images from both objective and perceptual quality perspectives. Because our denoising framework does not require physics-based noise models or system-dependent assumptions, our proposed method can be easily reproduced; consequently, it can also be generally applicable to various CT scanners or dose levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力大楚发布了新的文献求助20
1秒前
思源应助dd采纳,获得10
3秒前
chali48完成签到,获得积分10
3秒前
3秒前
踏实滑板完成签到 ,获得积分10
5秒前
111发布了新的文献求助10
5秒前
研途者完成签到,获得积分10
6秒前
gu发布了新的文献求助10
8秒前
orange9完成签到,获得积分10
9秒前
chao完成签到,获得积分10
9秒前
李健的小迷弟应助llinuu采纳,获得10
9秒前
9秒前
JC发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
善学以致用应助wxyllxx采纳,获得30
13秒前
13秒前
111完成签到,获得积分20
15秒前
dd发布了新的文献求助10
16秒前
哈比发布了新的文献求助10
16秒前
优秀笑寒完成签到,获得积分10
17秒前
17秒前
1989完成签到,获得积分10
17秒前
JamesPei应助谢佳冀采纳,获得10
18秒前
清秀的毛巾完成签到,获得积分20
18秒前
19秒前
19秒前
gu完成签到,获得积分20
19秒前
研友_VZG7GZ应助贝湾采纳,获得10
19秒前
iOhyeye23完成签到,获得积分10
20秒前
21秒前
旷野天发布了新的文献求助20
21秒前
22秒前
22秒前
23秒前
zzholiver完成签到,获得积分10
24秒前
搜集达人应助1111111111111采纳,获得10
24秒前
25秒前
26秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168294
求助须知:如何正确求助?哪些是违规求助? 2819584
关于积分的说明 7927169
捐赠科研通 2479425
什么是DOI,文献DOI怎么找? 1320833
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458