Electrochemistry of anode materials in lithium- and sodium-ion batteries

阳极 材料科学 电化学 阴极 纳米技术 兴奋剂 石墨 锂离子电池的纳米结构 锂(药物) 电极 光电子学 电气工程 复合材料 化学 工程类 医学 物理化学 内分泌学
作者
Basit Ali
出处
期刊:The Royal Society of Chemistry eBooks [The Royal Society of Chemistry]
卷期号:: 454-467
标识
DOI:10.1039/bk9781839169366-00454
摘要

Lithium-ion batteries (LIBs) have a high energy and power density, making them attractive for electric vehicles (EVs) and portable electronic devices. In commercially available LIBs, graphite and transition metal oxides (LiCoO2) are used as anode and cathode materials, respectively. Unfortunately, graphite has a safety concern related to dendrite formation at low voltage and also has low rate-capability issues, restricting its high-power demand. Li4Ti5O12 (LTO) is considered an alternative anode and a good contender for LIBs due to its high reversibility and zero structural changes during the lithiation/(de)lithiation process. Its high operating voltage (∼1.55 V vs. Li+/Li) helps avoid dendritic formations, thereby ensuring safe cycling. Despite these advantages, LTO has low electronic conductivity, relatively low capability at high current rates due to large polarization, and sluggish Li-ion diffusion. The work provides a solution to overcome these drawbacks and improve the LTO performance at high currents by modifying the crystal and electronic structure and reducing particle size. To accomplish these goals, the structural characteristics and electrochemical behavior of LTO-based materials have been systematically and intensively discussed. In this chapter, three different ways of doping in LTO are discussed that are already been synthesized by a simple solid-state method, co-doped LTO electrode exhibits outstanding cycling stability, having higher capacity retention of ∼98.79% after 300 cycles at high currents. While considering the practical advantages, this study provides two more benefits: (1) it sheds light on the doping strategy; (2) it elucidates the relations among the material composition, structure, and electrochemical performances in LIBs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
3秒前
3秒前
科研123发布了新的文献求助10
3秒前
Rainbow发布了新的文献求助10
3秒前
3秒前
米花完成签到 ,获得积分10
3秒前
凝子老师发布了新的文献求助10
4秒前
flying蝈蝈完成签到,获得积分10
4秒前
Rein完成签到,获得积分10
4秒前
4秒前
Zxc发布了新的文献求助10
4秒前
nininidoc完成签到,获得积分10
5秒前
123号发布了新的文献求助10
7秒前
Chen发布了新的文献求助10
8秒前
汉堡包应助caoyy采纳,获得10
8秒前
阳阳发布了新的文献求助10
8秒前
田所浩二完成签到 ,获得积分10
8秒前
8秒前
华仔应助奶糖采纳,获得30
9秒前
动力小滋完成签到,获得积分10
9秒前
ding应助瑶一瑶采纳,获得10
12秒前
fmwang完成签到,获得积分10
13秒前
万能图书馆应助Zxc采纳,获得10
13秒前
Rainbow完成签到,获得积分10
13秒前
小小郭完成签到 ,获得积分10
13秒前
15秒前
Orange应助务实的犀牛采纳,获得10
15秒前
追寻飞风完成签到,获得积分10
15秒前
wenli完成签到,获得积分10
16秒前
16秒前
17秒前
Schmoo完成签到,获得积分10
18秒前
20秒前
圆圆的脑袋应助涛浪采纳,获得10
21秒前
隐形曼青应助皮皮桂采纳,获得10
22秒前
凝子老师完成签到,获得积分10
22秒前
奶糖发布了新的文献求助30
22秒前
TORCH完成签到 ,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849