Electrochemistry of anode materials in lithium- and sodium-ion batteries

阳极 材料科学 电化学 阴极 纳米技术 兴奋剂 石墨 锂离子电池的纳米结构 锂(药物) 电极 光电子学 电气工程 复合材料 化学 工程类 医学 物理化学 内分泌学
作者
Basit Ali
出处
期刊:The Royal Society of Chemistry eBooks [The Royal Society of Chemistry]
卷期号:: 454-467
标识
DOI:10.1039/bk9781839169366-00454
摘要

Lithium-ion batteries (LIBs) have a high energy and power density, making them attractive for electric vehicles (EVs) and portable electronic devices. In commercially available LIBs, graphite and transition metal oxides (LiCoO2) are used as anode and cathode materials, respectively. Unfortunately, graphite has a safety concern related to dendrite formation at low voltage and also has low rate-capability issues, restricting its high-power demand. Li4Ti5O12 (LTO) is considered an alternative anode and a good contender for LIBs due to its high reversibility and zero structural changes during the lithiation/(de)lithiation process. Its high operating voltage (∼1.55 V vs. Li+/Li) helps avoid dendritic formations, thereby ensuring safe cycling. Despite these advantages, LTO has low electronic conductivity, relatively low capability at high current rates due to large polarization, and sluggish Li-ion diffusion. The work provides a solution to overcome these drawbacks and improve the LTO performance at high currents by modifying the crystal and electronic structure and reducing particle size. To accomplish these goals, the structural characteristics and electrochemical behavior of LTO-based materials have been systematically and intensively discussed. In this chapter, three different ways of doping in LTO are discussed that are already been synthesized by a simple solid-state method, co-doped LTO electrode exhibits outstanding cycling stability, having higher capacity retention of ∼98.79% after 300 cycles at high currents. While considering the practical advantages, this study provides two more benefits: (1) it sheds light on the doping strategy; (2) it elucidates the relations among the material composition, structure, and electrochemical performances in LIBs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长学发布了新的文献求助10
1秒前
dacongming发布了新的文献求助10
3秒前
小学生的练习簿完成签到,获得积分10
3秒前
脑洞疼应助小谷采纳,获得10
3秒前
研友_8DWkVZ发布了新的文献求助20
3秒前
Hello应助常常在努力采纳,获得10
4秒前
hyf发布了新的文献求助10
4秒前
CodeCraft应助123采纳,获得10
6秒前
孤星完成签到,获得积分20
6秒前
character577完成签到,获得积分10
8秒前
旺德福完成签到 ,获得积分10
8秒前
8秒前
天天快乐应助超级白昼采纳,获得10
8秒前
芜湖哈哈哈完成签到,获得积分20
9秒前
小二郎应助crayon采纳,获得30
9秒前
JamesPei应助fanfan采纳,获得10
13秒前
固的曼完成签到,获得积分10
13秒前
15秒前
Duckseid发布了新的文献求助10
16秒前
18秒前
19秒前
20秒前
抱住仙人球应助dacongming采纳,获得10
20秒前
知性的钢笔完成签到,获得积分10
21秒前
36456657应助kk采纳,获得10
23秒前
我是老大应助妮儿采纳,获得10
23秒前
鞑靼发布了新的文献求助10
24秒前
GengYing发布了新的文献求助10
24秒前
旺德福关注了科研通微信公众号
24秒前
24发布了新的文献求助20
26秒前
fanfan发布了新的文献求助10
26秒前
哈哈恬发布了新的文献求助10
27秒前
28秒前
芜湖哈哈哈关注了科研通微信公众号
28秒前
30秒前
31秒前
情怀应助橙子橙子橙子采纳,获得10
32秒前
SciGPT应助飞云采纳,获得10
34秒前
36秒前
妮儿发布了新的文献求助10
36秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3051374
求助须知:如何正确求助?哪些是违规求助? 2708662
关于积分的说明 7413751
捐赠科研通 2352869
什么是DOI,文献DOI怎么找? 1245378
科研通“疑难数据库(出版商)”最低求助积分说明 605633
版权声明 595829