Machine learning to improve interpretability of clinical, radiological and panel-based genomic data of glioma grade 4 patients undergoing surgical resection

医学 肿瘤科 IDH1 放射性武器 星形细胞瘤 胶质瘤 一致性 内科学 生物信息学 癌症研究 突变 基因 外科 生物 生物化学
作者
Michele Dal Bo,Maurizio Polano,Tamara Ius,Federica Di Cintio,Alessia Mondello,Ivana Manini,Enrico Pegolo,Daniela Cesselli,Carla Di Loreto,Miran Škrap,Giuseppe Toffoli
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:21 (1)
标识
DOI:10.1186/s12967-023-04308-y
摘要

Abstract Background Glioma grade 4 (GG4) tumors, including astrocytoma IDH-mutant grade 4 and the astrocytoma IDH wt are the most common and aggressive primary tumors of the central nervous system. Surgery followed by Stupp protocol still remains the first-line treatment in GG4 tumors. Although Stupp combination can prolong survival, prognosis of treated adult patients with GG4 still remains unfavorable. The introduction of innovative multi-parametric prognostic models may allow refinement of prognosis of these patients. Here, Machine Learning (ML) was applied to investigate the contribution in predicting overall survival (OS) of different available data (e.g. clinical data, radiological data, or panel-based sequencing data such as presence of somatic mutations and amplification) in a mono-institutional GG4 cohort. Methods By next-generation sequencing, using a panel of 523 genes, we performed analysis of copy number variations and of types and distribution of nonsynonymous mutations in 102 cases including 39 carmustine wafer (CW) treated cases. We also calculated tumor mutational burden (TMB). ML was applied using eXtreme Gradient Boosting for survival (XGBoost-Surv) to integrate clinical and radiological information with genomic data. Results By ML modeling (concordance (c)- index = 0.682 for the best model), the role of predicting OS of radiological parameters including extent of resection, preoperative volume and residual volume was confirmed. An association between CW application and longer OS was also showed. Regarding gene mutations, a role in predicting OS was defined for mutations of BRAF and of other genes involved in the PI3K-AKT-mTOR signaling pathway. Moreover, an association between high TMB and shorter OS was suggested. Consistently, when a cutoff of 1.7 mutations/megabase was applied, cases with higher TMB showed significantly shorter OS than cases with lower TMB. Conclusions The contribution of tumor volumetric data, somatic gene mutations and TBM in predicting OS of GG4 patients was defined by ML modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小敦发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
翔哥发布了新的文献求助10
3秒前
阿航完成签到,获得积分10
3秒前
情怀应助Mrrr采纳,获得10
4秒前
4秒前
调研昵称发布了新的文献求助10
5秒前
淡定念波完成签到,获得积分10
5秒前
5秒前
卷卷王发布了新的文献求助10
6秒前
6秒前
天天快乐应助phz采纳,获得10
7秒前
lili完成签到,获得积分10
8秒前
sakurai应助通~采纳,获得10
8秒前
8秒前
8秒前
柴火烧叽发布了新的文献求助10
9秒前
香蕉觅云应助内向秋寒采纳,获得10
9秒前
10秒前
10秒前
zyh完成签到,获得积分10
10秒前
10秒前
小马甲应助Anxinxin采纳,获得10
10秒前
ww发布了新的文献求助10
10秒前
这小猪真帅完成签到,获得积分10
11秒前
Hulda完成签到,获得积分10
11秒前
可靠访蕊完成签到 ,获得积分10
12秒前
深情安青应助科研小白采纳,获得10
12秒前
八八完成签到,获得积分20
13秒前
请叫我风吹麦浪应助AIA7采纳,获得10
13秒前
智齿怪物一号完成签到,获得积分10
13秒前
舒适山槐完成签到,获得积分10
13秒前
HJJHJH发布了新的文献求助10
13秒前
易哒哒发布了新的文献求助10
13秒前
ZZZpp完成签到,获得积分10
14秒前
大个应助756采纳,获得10
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794