Machine learning to improve interpretability of clinical, radiological and panel-based genomic data of glioma grade 4 patients undergoing surgical resection

医学 肿瘤科 IDH1 放射性武器 星形细胞瘤 胶质瘤 一致性 内科学 生物信息学 癌症研究 突变 基因 外科 生物 生物化学
作者
Michele Dal Bo,Maurizio Polano,Tamara Ius,Federica Di Cintio,Alessia Mondello,Ivana Manini,Enrico Pegolo,Daniela Cesselli,Carla Di Loreto,Miran Škrap,Giuseppe Toffoli
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:21 (1)
标识
DOI:10.1186/s12967-023-04308-y
摘要

Abstract Background Glioma grade 4 (GG4) tumors, including astrocytoma IDH-mutant grade 4 and the astrocytoma IDH wt are the most common and aggressive primary tumors of the central nervous system. Surgery followed by Stupp protocol still remains the first-line treatment in GG4 tumors. Although Stupp combination can prolong survival, prognosis of treated adult patients with GG4 still remains unfavorable. The introduction of innovative multi-parametric prognostic models may allow refinement of prognosis of these patients. Here, Machine Learning (ML) was applied to investigate the contribution in predicting overall survival (OS) of different available data (e.g. clinical data, radiological data, or panel-based sequencing data such as presence of somatic mutations and amplification) in a mono-institutional GG4 cohort. Methods By next-generation sequencing, using a panel of 523 genes, we performed analysis of copy number variations and of types and distribution of nonsynonymous mutations in 102 cases including 39 carmustine wafer (CW) treated cases. We also calculated tumor mutational burden (TMB). ML was applied using eXtreme Gradient Boosting for survival (XGBoost-Surv) to integrate clinical and radiological information with genomic data. Results By ML modeling (concordance (c)- index = 0.682 for the best model), the role of predicting OS of radiological parameters including extent of resection, preoperative volume and residual volume was confirmed. An association between CW application and longer OS was also showed. Regarding gene mutations, a role in predicting OS was defined for mutations of BRAF and of other genes involved in the PI3K-AKT-mTOR signaling pathway. Moreover, an association between high TMB and shorter OS was suggested. Consistently, when a cutoff of 1.7 mutations/megabase was applied, cases with higher TMB showed significantly shorter OS than cases with lower TMB. Conclusions The contribution of tumor volumetric data, somatic gene mutations and TBM in predicting OS of GG4 patients was defined by ML modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
兜兜完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
5秒前
光亮翠风发布了新的文献求助10
6秒前
YangLi完成签到,获得积分10
7秒前
Str0n完成签到,获得积分10
7秒前
科目三应助略略略采纳,获得10
8秒前
善良的雨筠完成签到,获得积分10
8秒前
汪春花完成签到,获得积分10
8秒前
xia发布了新的文献求助10
9秒前
可爱的香菇完成签到 ,获得积分10
9秒前
YangLi发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
碗碗豆喵完成签到 ,获得积分10
11秒前
nini完成签到,获得积分10
12秒前
lsj386完成签到 ,获得积分10
13秒前
王舒心发布了新的文献求助10
14秒前
15秒前
15秒前
xin发布了新的文献求助10
16秒前
16秒前
一只小艾欧完成签到,获得积分10
17秒前
ytxstrawberry完成签到 ,获得积分10
17秒前
Owen应助昏睡的飞雪采纳,获得10
17秒前
量子星尘发布了新的文献求助10
20秒前
跳跃小伙发布了新的文献求助10
20秒前
光亮翠风发布了新的文献求助10
20秒前
月亮发布了新的文献求助10
21秒前
111完成签到,获得积分10
23秒前
23秒前
兴奋的嚣完成签到 ,获得积分10
25秒前
26秒前
28秒前
28秒前
善学以致用应助TM采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646393
求助须知:如何正确求助?哪些是违规求助? 4771261
关于积分的说明 15034850
捐赠科研通 4805220
什么是DOI,文献DOI怎么找? 2569528
邀请新用户注册赠送积分活动 1526533
关于科研通互助平台的介绍 1485849