Machine learning to improve interpretability of clinical, radiological and panel-based genomic data of glioma grade 4 patients undergoing surgical resection

医学 肿瘤科 IDH1 放射性武器 星形细胞瘤 胶质瘤 一致性 内科学 生物信息学 癌症研究 突变 基因 外科 生物 生物化学
作者
Michele Dal Bo,Maurizio Polano,Tamara Ius,Federica Di Cintio,Alessia Mondello,Ivana Manini,Enrico Pegolo,Daniela Cesselli,Carla Di Loreto,Miran Škrap,Giuseppe Toffoli
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:21 (1)
标识
DOI:10.1186/s12967-023-04308-y
摘要

Abstract Background Glioma grade 4 (GG4) tumors, including astrocytoma IDH-mutant grade 4 and the astrocytoma IDH wt are the most common and aggressive primary tumors of the central nervous system. Surgery followed by Stupp protocol still remains the first-line treatment in GG4 tumors. Although Stupp combination can prolong survival, prognosis of treated adult patients with GG4 still remains unfavorable. The introduction of innovative multi-parametric prognostic models may allow refinement of prognosis of these patients. Here, Machine Learning (ML) was applied to investigate the contribution in predicting overall survival (OS) of different available data (e.g. clinical data, radiological data, or panel-based sequencing data such as presence of somatic mutations and amplification) in a mono-institutional GG4 cohort. Methods By next-generation sequencing, using a panel of 523 genes, we performed analysis of copy number variations and of types and distribution of nonsynonymous mutations in 102 cases including 39 carmustine wafer (CW) treated cases. We also calculated tumor mutational burden (TMB). ML was applied using eXtreme Gradient Boosting for survival (XGBoost-Surv) to integrate clinical and radiological information with genomic data. Results By ML modeling (concordance (c)- index = 0.682 for the best model), the role of predicting OS of radiological parameters including extent of resection, preoperative volume and residual volume was confirmed. An association between CW application and longer OS was also showed. Regarding gene mutations, a role in predicting OS was defined for mutations of BRAF and of other genes involved in the PI3K-AKT-mTOR signaling pathway. Moreover, an association between high TMB and shorter OS was suggested. Consistently, when a cutoff of 1.7 mutations/megabase was applied, cases with higher TMB showed significantly shorter OS than cases with lower TMB. Conclusions The contribution of tumor volumetric data, somatic gene mutations and TBM in predicting OS of GG4 patients was defined by ML modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
毛毛毛毛小毛完成签到,获得积分10
2秒前
pazhao发布了新的文献求助10
2秒前
ll完成签到 ,获得积分10
3秒前
庞steven完成签到,获得积分20
3秒前
清脆如娆完成签到 ,获得积分10
4秒前
4秒前
Link完成签到,获得积分10
5秒前
大个应助HZBX采纳,获得10
6秒前
搜集达人应助谦让大娘采纳,获得10
6秒前
李好好完成签到,获得积分10
8秒前
8秒前
Jasmine完成签到,获得积分10
9秒前
执着的钢笔完成签到,获得积分10
10秒前
10秒前
10秒前
dcy发布了新的文献求助10
10秒前
11秒前
12秒前
13秒前
所所应助李好好采纳,获得10
13秒前
小蘑菇应助焰火青年采纳,获得10
14秒前
SYLH应助焰火青年采纳,获得30
14秒前
CodeCraft应助焰火青年采纳,获得20
14秒前
科研通AI5应助焰火青年采纳,获得10
14秒前
14秒前
Kestis.发布了新的文献求助30
14秒前
小卜发布了新的文献求助10
15秒前
Spine脊柱发布了新的文献求助30
15秒前
SYLH应助HJH采纳,获得50
16秒前
李梦发布了新的文献求助30
16秒前
16秒前
李爱国应助pazhao采纳,获得10
16秒前
陈晶发布了新的文献求助10
16秒前
科研通AI5应助RRRCY采纳,获得10
17秒前
皮皮怪发布了新的文献求助10
18秒前
赵哈哈发布了新的文献求助10
18秒前
19秒前
SYLH应助龙游天下采纳,获得20
20秒前
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Microbiology and Health Benefits of Traditional Alcoholic Beverages 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979984
求助须知:如何正确求助?哪些是违规求助? 3524121
关于积分的说明 11219921
捐赠科研通 3261562
什么是DOI,文献DOI怎么找? 1800703
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232