亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning to improve interpretability of clinical, radiological and panel-based genomic data of glioma grade 4 patients undergoing surgical resection

医学 肿瘤科 IDH1 放射性武器 星形细胞瘤 胶质瘤 一致性 内科学 生物信息学 癌症研究 突变 基因 外科 生物 生物化学
作者
Michele Dal Bo,Maurizio Polano,Tamara Ius,Federica Di Cintio,Alessia Mondello,Ivana Manini,Enrico Pegolo,Daniela Cesselli,Carla Di Loreto,Miran Škrap,Giuseppe Toffoli
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:21 (1)
标识
DOI:10.1186/s12967-023-04308-y
摘要

Abstract Background Glioma grade 4 (GG4) tumors, including astrocytoma IDH-mutant grade 4 and the astrocytoma IDH wt are the most common and aggressive primary tumors of the central nervous system. Surgery followed by Stupp protocol still remains the first-line treatment in GG4 tumors. Although Stupp combination can prolong survival, prognosis of treated adult patients with GG4 still remains unfavorable. The introduction of innovative multi-parametric prognostic models may allow refinement of prognosis of these patients. Here, Machine Learning (ML) was applied to investigate the contribution in predicting overall survival (OS) of different available data (e.g. clinical data, radiological data, or panel-based sequencing data such as presence of somatic mutations and amplification) in a mono-institutional GG4 cohort. Methods By next-generation sequencing, using a panel of 523 genes, we performed analysis of copy number variations and of types and distribution of nonsynonymous mutations in 102 cases including 39 carmustine wafer (CW) treated cases. We also calculated tumor mutational burden (TMB). ML was applied using eXtreme Gradient Boosting for survival (XGBoost-Surv) to integrate clinical and radiological information with genomic data. Results By ML modeling (concordance (c)- index = 0.682 for the best model), the role of predicting OS of radiological parameters including extent of resection, preoperative volume and residual volume was confirmed. An association between CW application and longer OS was also showed. Regarding gene mutations, a role in predicting OS was defined for mutations of BRAF and of other genes involved in the PI3K-AKT-mTOR signaling pathway. Moreover, an association between high TMB and shorter OS was suggested. Consistently, when a cutoff of 1.7 mutations/megabase was applied, cases with higher TMB showed significantly shorter OS than cases with lower TMB. Conclusions The contribution of tumor volumetric data, somatic gene mutations and TBM in predicting OS of GG4 patients was defined by ML modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默善愁发布了新的文献求助10
4秒前
丘比特应助DTzheng采纳,获得10
15秒前
完美世界应助EaRnn采纳,获得10
18秒前
Wenjian7761完成签到,获得积分10
33秒前
36秒前
38秒前
39秒前
chenzheng完成签到 ,获得积分20
39秒前
量子星尘发布了新的文献求助10
41秒前
41秒前
DTzheng发布了新的文献求助10
43秒前
CodeCraft应助辛巴采纳,获得10
43秒前
小智发布了新的文献求助10
44秒前
冷艳咖啡豆完成签到,获得积分10
46秒前
EaRnn发布了新的文献求助10
46秒前
久久丫完成签到 ,获得积分10
49秒前
55秒前
抚琴祛魅完成签到 ,获得积分10
57秒前
烟花应助科研通管家采纳,获得10
59秒前
ceeray23应助科研通管家采纳,获得10
59秒前
ceeray23应助科研通管家采纳,获得10
1分钟前
吃溜溜梅吧y完成签到,获得积分10
1分钟前
辛巴发布了新的文献求助10
1分钟前
1分钟前
Marciu33发布了新的文献求助10
1分钟前
Ammr完成签到 ,获得积分10
1分钟前
周杰完成签到,获得积分10
1分钟前
Aloha完成签到,获得积分10
1分钟前
周杰发布了新的文献求助10
1分钟前
陈洋完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
吉洪发布了新的文献求助10
1分钟前
NexusExplorer应助顺利采纳,获得10
1分钟前
orixero应助美满惜寒采纳,获得10
1分钟前
2分钟前
2分钟前
sono发布了新的文献求助10
2分钟前
Shan完成签到 ,获得积分10
2分钟前
在水一方应助美满惜寒采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413046
求助须知:如何正确求助?哪些是违规求助? 4530302
关于积分的说明 14122781
捐赠科研通 4445187
什么是DOI,文献DOI怎么找? 2439119
邀请新用户注册赠送积分活动 1431201
关于科研通互助平台的介绍 1408570