Machine learning to improve interpretability of clinical, radiological and panel-based genomic data of glioma grade 4 patients undergoing surgical resection

医学 肿瘤科 IDH1 放射性武器 星形细胞瘤 胶质瘤 一致性 内科学 生物信息学 癌症研究 突变 基因 外科 生物 生物化学
作者
Michele Dal Bo,Maurizio Polano,Tamara Ius,Federica Di Cintio,Alessia Mondello,Ivana Manini,Enrico Pegolo,Daniela Cesselli,Carla Di Loreto,Miran Škrap,Giuseppe Toffoli
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:21 (1)
标识
DOI:10.1186/s12967-023-04308-y
摘要

Abstract Background Glioma grade 4 (GG4) tumors, including astrocytoma IDH-mutant grade 4 and the astrocytoma IDH wt are the most common and aggressive primary tumors of the central nervous system. Surgery followed by Stupp protocol still remains the first-line treatment in GG4 tumors. Although Stupp combination can prolong survival, prognosis of treated adult patients with GG4 still remains unfavorable. The introduction of innovative multi-parametric prognostic models may allow refinement of prognosis of these patients. Here, Machine Learning (ML) was applied to investigate the contribution in predicting overall survival (OS) of different available data (e.g. clinical data, radiological data, or panel-based sequencing data such as presence of somatic mutations and amplification) in a mono-institutional GG4 cohort. Methods By next-generation sequencing, using a panel of 523 genes, we performed analysis of copy number variations and of types and distribution of nonsynonymous mutations in 102 cases including 39 carmustine wafer (CW) treated cases. We also calculated tumor mutational burden (TMB). ML was applied using eXtreme Gradient Boosting for survival (XGBoost-Surv) to integrate clinical and radiological information with genomic data. Results By ML modeling (concordance (c)- index = 0.682 for the best model), the role of predicting OS of radiological parameters including extent of resection, preoperative volume and residual volume was confirmed. An association between CW application and longer OS was also showed. Regarding gene mutations, a role in predicting OS was defined for mutations of BRAF and of other genes involved in the PI3K-AKT-mTOR signaling pathway. Moreover, an association between high TMB and shorter OS was suggested. Consistently, when a cutoff of 1.7 mutations/megabase was applied, cases with higher TMB showed significantly shorter OS than cases with lower TMB. Conclusions The contribution of tumor volumetric data, somatic gene mutations and TBM in predicting OS of GG4 patients was defined by ML modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
香蕉觅云应助等等采纳,获得10
1秒前
小丸子完成签到,获得积分20
1秒前
2秒前
火星上的孤兰完成签到,获得积分10
2秒前
1234567完成签到,获得积分10
3秒前
冷月_孤城完成签到,获得积分10
4秒前
图书馆发布了新的文献求助10
5秒前
隐形曼青应助健忘的芷荷采纳,获得10
5秒前
Firo完成签到,获得积分10
5秒前
6秒前
不配.应助yumi采纳,获得10
6秒前
小陈完成签到,获得积分10
6秒前
坚强黎昕完成签到,获得积分10
7秒前
666666发布了新的文献求助10
7秒前
彭川宁完成签到,获得积分20
7秒前
aurora发布了新的文献求助10
8秒前
8秒前
littleyi完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
汉堡包应助cc采纳,获得10
10秒前
十八完成签到 ,获得积分10
12秒前
13秒前
鸣蜩阿六发布了新的文献求助10
13秒前
mumu发布了新的文献求助10
13秒前
keke发布了新的文献求助10
13秒前
孙琳发布了新的文献求助30
14秒前
Man发布了新的文献求助10
14秒前
开心半梅完成签到 ,获得积分10
14秒前
maox1aoxin应助zxvcbnm采纳,获得10
14秒前
薰硝壤应助李志达采纳,获得30
14秒前
橘寄发布了新的文献求助10
15秒前
我是老大应助乐观乐枫采纳,获得10
16秒前
18秒前
Bluebulu完成签到,获得积分10
19秒前
文献的完成签到,获得积分10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135254
求助须知:如何正确求助?哪些是违规求助? 2786259
关于积分的说明 7776312
捐赠科研通 2442153
什么是DOI,文献DOI怎么找? 1298474
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847