LNKDSEA: Machine Learning Based IoT/IIoT Attack Detection Method

计算机科学 服务拒绝攻击 物联网 朴素贝叶斯分类器 恶意软件 入侵检测系统 支持向量机 机器学习 班级(哲学) 决策树 人工智能 计算机安全 GSM演进的增强数据速率 模型攻击 异常检测 互联网 操作系统
作者
Manasa Koppula,Leo Joseph L. M. I
标识
DOI:10.1109/icaecis58353.2023.10170095
摘要

The Internet of Things (IoT) brings together more devices that can communicate with one another while requiring little user input. IoT is one of the computer disciplines that is expanding rapidly, but the fact is that with the increasingly intimidating Internet world, IoT is susceptible to different kinds of cyberattacks. Practical defenses against this, including network anomaly detection, must be built to secure IoT networks. Attacks cannot be completely prevented forever, but practical defense depends on the ability to identify an attack as soon as possible. IoT systems cannot be protected by conventional high-end security solutions because IoT devices have a limited amount of storage and processing capability. This suggests the need for the creation of smart network-based solutions for cyberattacks, such as Machine Learning (ML). Although the application of ML methods in detecting attacks has numerous studies in recent years, attack detection in IoT networks has received less attention. The major goal of this study is to create and evaluate a hybrid ensemble algorithm called LNKDSEA (Logistic regression, Naïve Bayes, K-nearest neighbor, Decision tree, and Support vector machine-based Ensemble Algorithm). The proposed approach can efficiently identify IoT network attacks including DDoS, information gathering, Malware, Injection attacks, and Man-in-The-Middle- Attack. The edge-IIoTset dataset is used to evaluate the proposed model. During the implementation stage, the proposed technique is evaluated by employing binary and multi-class (6 and 15 Class) classifications of cyberattacks, and high performance is accomplished.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
he完成签到,获得积分10
刚刚
刚刚
科研小民工应助忍冬半夏采纳,获得30
刚刚
小马甲应助年华采纳,获得10
刚刚
刚刚
CipherSage应助开放的听枫采纳,获得10
刚刚
Never stall发布了新的文献求助10
刚刚
刚刚
Jolene66发布了新的文献求助10
1秒前
zy完成签到,获得积分10
1秒前
Adzuki0812完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
Anne应助哇哈哈采纳,获得10
3秒前
四季刻歌完成签到,获得积分10
3秒前
忆点儿孤狼完成签到,获得积分10
3秒前
搜集达人应助高贵的迎蕾采纳,获得10
3秒前
华仔应助一平采纳,获得10
4秒前
汉堡包应助bluer采纳,获得10
4秒前
4秒前
4秒前
直率心锁完成签到,获得积分10
4秒前
5秒前
李若水完成签到,获得积分10
5秒前
默默水之发布了新的文献求助10
5秒前
zink发布了新的文献求助10
6秒前
7秒前
映寒完成签到,获得积分10
7秒前
JamesPei应助幸福胡萝卜采纳,获得10
8秒前
8秒前
8秒前
Never stall完成签到,获得积分10
9秒前
鱼啦啦完成签到,获得积分10
9秒前
9秒前
猫了个喵完成签到,获得积分10
10秒前
冷静的嫣然完成签到 ,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678