已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LNKDSEA: Machine Learning Based IoT/IIoT Attack Detection Method

计算机科学 服务拒绝攻击 物联网 朴素贝叶斯分类器 恶意软件 入侵检测系统 支持向量机 机器学习 班级(哲学) 决策树 人工智能 计算机安全 GSM演进的增强数据速率 模型攻击 异常检测 互联网 操作系统
作者
Manasa Koppula,Leo Joseph L. M. I
标识
DOI:10.1109/icaecis58353.2023.10170095
摘要

The Internet of Things (IoT) brings together more devices that can communicate with one another while requiring little user input. IoT is one of the computer disciplines that is expanding rapidly, but the fact is that with the increasingly intimidating Internet world, IoT is susceptible to different kinds of cyberattacks. Practical defenses against this, including network anomaly detection, must be built to secure IoT networks. Attacks cannot be completely prevented forever, but practical defense depends on the ability to identify an attack as soon as possible. IoT systems cannot be protected by conventional high-end security solutions because IoT devices have a limited amount of storage and processing capability. This suggests the need for the creation of smart network-based solutions for cyberattacks, such as Machine Learning (ML). Although the application of ML methods in detecting attacks has numerous studies in recent years, attack detection in IoT networks has received less attention. The major goal of this study is to create and evaluate a hybrid ensemble algorithm called LNKDSEA (Logistic regression, Naïve Bayes, K-nearest neighbor, Decision tree, and Support vector machine-based Ensemble Algorithm). The proposed approach can efficiently identify IoT network attacks including DDoS, information gathering, Malware, Injection attacks, and Man-in-The-Middle- Attack. The edge-IIoTset dataset is used to evaluate the proposed model. During the implementation stage, the proposed technique is evaluated by employing binary and multi-class (6 and 15 Class) classifications of cyberattacks, and high performance is accomplished.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
第五元素完成签到,获得积分10
刚刚
852应助Maestro_S采纳,获得10
3秒前
3秒前
GYH发布了新的文献求助30
8秒前
h0jian09完成签到,获得积分10
8秒前
平底锅攻击完成签到 ,获得积分10
9秒前
善学以致用应助Cwx2020采纳,获得10
10秒前
冷酷函完成签到 ,获得积分10
12秒前
14秒前
娜写年华完成签到 ,获得积分10
15秒前
共享精神应助liyang999采纳,获得10
16秒前
20秒前
单纯芹菜完成签到,获得积分10
21秒前
躺平摆烂小饼干完成签到,获得积分10
24秒前
25秒前
Cwx2020发布了新的文献求助10
25秒前
我的苞娜公主完成签到,获得积分10
27秒前
田様应助故城采纳,获得10
29秒前
everglow发布了新的文献求助10
30秒前
32秒前
放放完成签到,获得积分20
34秒前
SciGPT应助泉水叮咚采纳,获得10
34秒前
霅霅完成签到,获得积分10
38秒前
脑洞疼应助科研通管家采纳,获得10
38秒前
Orange应助科研通管家采纳,获得10
38秒前
汉堡包应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
景辣条应助科研通管家采纳,获得10
38秒前
汉堡包应助科研通管家采纳,获得10
38秒前
SciGPT应助科研通管家采纳,获得10
38秒前
情怀应助科研通管家采纳,获得10
38秒前
38秒前
科研通AI2S应助现代的邑采纳,获得10
44秒前
科研通AI2S应助小小鱼采纳,获得10
46秒前
47秒前
52秒前
55秒前
小鱼发布了新的文献求助10
57秒前
58秒前
积极的香菇完成签到 ,获得积分10
58秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136896
求助须知:如何正确求助?哪些是违规求助? 2787866
关于积分的说明 7783548
捐赠科研通 2443945
什么是DOI,文献DOI怎么找? 1299509
科研通“疑难数据库(出版商)”最低求助积分说明 625461
版权声明 600954