Ultrahigh-flux 2D CoO@MoS2 composite membrane activated peroxymonosulfate through enhanced electron transfer for rapid degradation of refractory benzotriazole

催化作用 化学 苯并三唑 降级(电信) 化学工程 电子转移 复合数 氧化还原 无机化学 光化学 材料科学 有机化学 电信 生物化学 计算机科学 工程类 复合材料
作者
Juan Zhang,Yulong Ma,Yonggang Sun,Lei Wang,Liqiong Wang,Zhen Wang,Bolong Zhao,Jingdan Gao,Min Xu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:471: 144837-144837 被引量:14
标识
DOI:10.1016/j.cej.2023.144837
摘要

The application of heterogeneous advanced oxidation processes (AOPs) in the removal of refractory pollutants has been hindered by several drawbacks, such as difficult recovery of the powder catalyst, the low yields and inefficient utilization of reactive oxygen species (ROS). We developed a novel catalytic membrane named 2D CoO@MoS2 membrane, its catalytic active layer was a composite material formed by MoS2 nanosheets wrapped and intercalated between 2D CoO porous nanoplates, providing abundant active sites and oxygen vacancies (Ov). 2D CoO@MoS2 membrane was applied to activate peroxymonosulfate (PMS) for benzotriazole (BTA) degradation. DFT calculations and series characterizations demonstrated that electron transfer occurred at the contact interface between 2D CoO and MoS2 phase, while the 2D CoO@MoS2 composite could act as an effective electron donor for PMS. The redox cycles of Mo(IV)/Mo(VI) and Ov/O2− could synergistically enhance the regeneration of Co(II), thereby maintaining the cycle of catalytic active center, which facilitated the spontaneous dissociation of PMS to generate various ROS, including SO4− (30.2 μM), 1O2 (8.6 μM) and OH (5.8 μM). These ROS rapidly degraded 99.7% of BTA (20 mg/L) through the nanoconfined layer of hydrophilic membrane with an ultra-high flux of 2172 L m−2h−1 in a super-fast time (∼195 ms). Surprisingly, the degradation rate constant k exhibited 3 to 5 orders of magnitude higher compared to conventional heterogeneous AOPs. Furthermore, the catalytic stability, degradation pathways and biological toxicity of BTA degradation were also evaluated. This membrane-based AOPs technique provides a new approach to overcome the limitations of conventional heterogeneous catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助观自在采纳,获得10
1秒前
陈陈陈1发布了新的文献求助50
2秒前
2秒前
wrx_KGM发布了新的文献求助10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
詭詐应助科研通管家采纳,获得10
2秒前
2秒前
sutu应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
小田完成签到 ,获得积分10
3秒前
Zhy发布了新的文献求助10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
Ali完成签到,获得积分20
3秒前
詭詐应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
Thomas完成签到,获得积分10
3秒前
VDC应助科研通管家采纳,获得20
3秒前
dqh完成签到,获得积分10
3秒前
詭詐应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
彭于彦祖应助科研通管家采纳,获得20
4秒前
Agernon应助清风采纳,获得10
4秒前
大脑袋应助科研通管家采纳,获得30
4秒前
sutu应助科研通管家采纳,获得10
4秒前
秀丽烨霖应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
詭詐应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
君君发布了新的文献求助10
5秒前
5秒前
dqh发布了新的文献求助10
6秒前
7秒前
辞璟完成签到 ,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559249
求助须知:如何正确求助?哪些是违规求助? 3133915
关于积分的说明 9404473
捐赠科研通 2834019
什么是DOI,文献DOI怎么找? 1557787
邀请新用户注册赠送积分活动 727686
科研通“疑难数据库(出版商)”最低求助积分说明 716399