Application of Artificial Intelligence in Drug–Drug Interactions Prediction: A Review

计算机科学 机器学习 人工智能 药品 医学 药理学
作者
Yuanyuan Zhang,Zengqian Deng,Xiaoyu Xu,Yinfei Feng,Junliang Shang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2158-2173 被引量:31
标识
DOI:10.1021/acs.jcim.3c00582
摘要

Drug–drug interactions (DDI) are a critical aspect of drug research that can have adverse effects on patients and can lead to serious consequences. Predicting these events accurately can significantly improve clinicians' ability to make better decisions and establish optimal treatment regimens. However, manually detecting these interactions is time-consuming and labor-intensive. Utilizing the advancements in Artificial Intelligence (AI) is essential for achieving accurate forecasts of DDIs. In this review, DDI prediction tasks are classified into three types according to the type of DDI prediction: undirected DDI prediction, DDI events prediction, and Asymmetric DDI prediction. The paper then reviews the progress of AI for each of these three prediction tasks in DDI and provides a summary of the data sets used as well as the representative methods used in these three prediction directions. In this review, we aim to provide a comprehensive overview of drug interaction prediction. The first section introduces commonly used databases and presents an overview of current research advancements and techniques across three domains of DDI. Additionally, we introduce classical machine learning techniques for predicting undirected drug interactions and provide a timeline for the progression of the predicted drug interaction events. At last, we debate the difficulties and prospects of AI approaches at predicting DDI, emphasizing their potential for improving clinical decision-making and patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
暴欣完成签到,获得积分10
1秒前
1秒前
Yan发布了新的文献求助10
1秒前
2秒前
沙拉依丁完成签到,获得积分10
2秒前
SciGPT应助黄建雨采纳,获得10
3秒前
ssss发布了新的文献求助10
4秒前
HXH完成签到,获得积分10
4秒前
呆萌代桃完成签到,获得积分10
4秒前
5秒前
AiQi完成签到 ,获得积分10
5秒前
暴欣发布了新的文献求助10
5秒前
沙拉依丁发布了新的文献求助10
5秒前
6秒前
sakualua发布了新的文献求助10
6秒前
hahaha完成签到 ,获得积分10
6秒前
哟252发布了新的文献求助10
6秒前
研友_VZG7GZ应助潇洒莞采纳,获得10
6秒前
6秒前
刘敏完成签到 ,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
五月的香气完成签到,获得积分10
10秒前
田様应助光亮妙之采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
ly完成签到 ,获得积分10
11秒前
bala完成签到 ,获得积分10
12秒前
Owen应助严十三采纳,获得10
12秒前
顺心冰岚发布了新的文献求助10
12秒前
13秒前
zzx完成签到,获得积分10
13秒前
英姑应助诚心问芙采纳,获得10
13秒前
1232112完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661945
求助须知:如何正确求助?哪些是违规求助? 3222898
关于积分的说明 9748969
捐赠科研通 2932631
什么是DOI,文献DOI怎么找? 1605752
邀请新用户注册赠送积分活动 758105
科研通“疑难数据库(出版商)”最低求助积分说明 734680