Application of Artificial Intelligence in Drug–Drug Interactions Prediction: A Review

计算机科学 机器学习 人工智能 药品 医学 药理学
作者
Yuanyuan Zhang,Zengqian Deng,Xiaoyu Xu,Yinfei Feng,Junliang Shang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2158-2173 被引量:16
标识
DOI:10.1021/acs.jcim.3c00582
摘要

Drug–drug interactions (DDI) are a critical aspect of drug research that can have adverse effects on patients and can lead to serious consequences. Predicting these events accurately can significantly improve clinicians' ability to make better decisions and establish optimal treatment regimens. However, manually detecting these interactions is time-consuming and labor-intensive. Utilizing the advancements in Artificial Intelligence (AI) is essential for achieving accurate forecasts of DDIs. In this review, DDI prediction tasks are classified into three types according to the type of DDI prediction: undirected DDI prediction, DDI events prediction, and Asymmetric DDI prediction. The paper then reviews the progress of AI for each of these three prediction tasks in DDI and provides a summary of the data sets used as well as the representative methods used in these three prediction directions. In this review, we aim to provide a comprehensive overview of drug interaction prediction. The first section introduces commonly used databases and presents an overview of current research advancements and techniques across three domains of DDI. Additionally, we introduce classical machine learning techniques for predicting undirected drug interactions and provide a timeline for the progression of the predicted drug interaction events. At last, we debate the difficulties and prospects of AI approaches at predicting DDI, emphasizing their potential for improving clinical decision-making and patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzdwy发布了新的文献求助10
刚刚
liu完成签到 ,获得积分10
1秒前
李爱国应助luck采纳,获得10
1秒前
1秒前
赘婿应助CUREME采纳,获得30
2秒前
eyf完成签到,获得积分10
2秒前
3秒前
鲤鱼一一完成签到,获得积分10
5秒前
李白发布了新的文献求助10
6秒前
黑暗系完成签到,获得积分10
6秒前
1609855535完成签到,获得积分10
7秒前
ZH发布了新的文献求助10
7秒前
wang发布了新的文献求助10
9秒前
njusdf发布了新的文献求助10
9秒前
11秒前
卑微科研小白完成签到,获得积分10
12秒前
归海听云完成签到,获得积分10
12秒前
Glamour_Joy完成签到,获得积分10
12秒前
萍萍完成签到,获得积分10
12秒前
星辰大海应助科研通管家采纳,获得10
13秒前
asdfqwer应助科研通管家采纳,获得20
13秒前
淡然红牛应助科研通管家采纳,获得20
13秒前
orixero应助科研通管家采纳,获得10
13秒前
cc_huixianxie应助科研通管家采纳,获得10
13秒前
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
asdfqwer应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得100
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
14秒前
Moonber完成签到,获得积分10
16秒前
萍萍发布了新的文献求助100
16秒前
xiahongmei完成签到 ,获得积分10
16秒前
123完成签到 ,获得积分10
17秒前
Anonymous完成签到,获得积分10
17秒前
无敌小天天完成签到 ,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788133
关于积分的说明 7784741
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011