Endorsing Na+ storage mechanism in low tortuosity, high plateau capacity hard carbon towards development of high-performance sodium-ion pouch cells

曲折 阳极 阴极 电化学 材料科学 碳纤维 微观结构 电极 成核 化学工程 纳米技术 化学 复合材料 冶金 工程类 有机化学 多孔性 物理化学 复合数
作者
K. Bhawana,Manoj Gautam,Govind Kumar Mishra,Nilanjan Chakrabarty,S. Wajhal,Dhruv Kumar,Dimple P. Dutta,Sagar Mitra
出处
期刊:Carbon [Elsevier BV]
卷期号:214: 118319-118319 被引量:20
标识
DOI:10.1016/j.carbon.2023.118319
摘要

Understanding the disordered structure of hard carbon and the sodium-ion storage mechanism is essential for the commercialization of sodium-ion batteries (SIBs). Herein, we have successfully synthesized low tortuosity hard carbon with high plateau capacity at low voltage regions. This study first explores the correlation between the pore structure, sodium-ion diffusion pathway, and half-cell performance. Furthermore, the Na+ storage mechanism has been studied in detail by electrochemical and surface characterizations. The distribution of relaxation times (DRT) was used for a deeper understanding of electrode reactions. Additionally, the correlation between porosity and tortuosity was established with structural evolutions on the synthesized hard carbon. For anode structure, the Na+ pathway was examined by tortuosity experiment and validated by the COMSOL simulation study. The anode electrode performance displayed a low voltage-plateau and high discharge capacity of ∼301 mAh g−1 at 0.1C (∼35 mA g−1 with excellent cyclic stability even at 1C (∼350 mA g−1) and extended up to 1000 cycles with ∼94% capacity retention. Later, the full-cell fabricated with hard carbon as an anode and polyanionic sodium vanadium phosphate (Na3V2(PO4)3) as the cathode exhibited a superior cyclic performance up to 450 cycles at 0.1C. Further, the pouch cell (∼100 mAh designed capacity) was fabricated and exhibited favorable cyclic stability up to 300 cycles and delivered ∼135.2 Wh kg−1 of energy density at the cell level. This research may offer a distinct hard carbon microstructure that will be effective in developing high-performance practical SIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
陈同学完成签到,获得积分20
1秒前
1秒前
田様应助Z1070741749采纳,获得30
2秒前
cqnuly完成签到,获得积分10
2秒前
咕咕完成签到,获得积分10
3秒前
orixero应助丰富无色采纳,获得10
4秒前
科研通AI5应助水月采纳,获得10
4秒前
酷波er应助pp1230采纳,获得10
4秒前
星辰大海应助kittykitten采纳,获得10
4秒前
4秒前
拿铁五分糖完成签到,获得积分10
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助30
6秒前
科研通AI5应助笛子采纳,获得10
6秒前
6秒前
Foxy完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
顺利访枫完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
前程似锦完成签到 ,获得积分10
10秒前
luxiansheng完成签到,获得积分10
10秒前
panghu完成签到,获得积分10
10秒前
汉堡包应助斯文明杰采纳,获得10
10秒前
三颜寻雪发布了新的文献求助10
11秒前
在水一方应助星辰采纳,获得10
12秒前
Z1070741749完成签到,获得积分10
12秒前
12秒前
panghu发布了新的文献求助10
12秒前
13秒前
十元完成签到,获得积分10
13秒前
繁荣的秋发布了新的文献求助10
14秒前
丘比特应助LOVE0077采纳,获得10
15秒前
16秒前
weiwenzuo完成签到,获得积分10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662771
求助须知:如何正确求助?哪些是违规求助? 3223591
关于积分的说明 9752272
捐赠科研通 2933546
什么是DOI,文献DOI怎么找? 1606137
邀请新用户注册赠送积分活动 758279
科研通“疑难数据库(出版商)”最低求助积分说明 734771