Combined use of the ELF test and CLivD score improves prediction of liver‐related outcomes in the general population

医学 内科学 弗雷明翰风险评分 人口 风险评估 糖尿病 肝病 疾病 环境卫生 内分泌学 计算机安全 计算机科学
作者
Fredrik Åberg,Kustaa Saarinen,Antti Jula,Annamari Lundqvist,Terhi Vihervaara,Iris Erlund,Martti Färkkilâ
出处
期刊:Liver International [Wiley]
卷期号:43 (10): 2107-2115 被引量:1
标识
DOI:10.1111/liv.15681
摘要

Abstract Background and Aims Effective and feasible population screening strategies are needed for the early detection of individuals at high risk of future severe liver‐related outcomes. We evaluated the predictive performance of the combination of liver fibrosis assessment, phenotype profile, and genetic risk. Methods Data from 5795 adults attending the Finnish Health 2000 Survey were linked with healthcare registers for liver‐related outcomes (hospitalization, hepatocellular cancer, and death). Fibrosis was assessed using the enhanced liver fibrosis (ELF) test, phenotype profile by the chronic liver disease (CLivD) risk score, and genetic risk by a validated Polygenic Risk Score (PRS‐5). Predictive performance was assessed by competing‐risk analyses. Results During a median 13‐year follow‐up, 64 liver‐related outcome events were recorded. ELF, CLivD score, and PRS‐5 were independently associated with liver‐related outcomes. The absolute 10‐year risk of liver‐related outcomes at an ELF value of 11.3 ranged from 0.3% to 33% depending on the CLivD score. The CLivD score added 51% of new predictive information to the ELF test and improved areas under the curve (AUCs) from 0.91, 0.81, and 0.71 for ELF alone to 0.95, 0.85, and 0.80, respectively, for ELF combined with the CLivD score at 1, 5, and 10 years. The greatest improvement was for 10‐year predictions (delta‐AUC 0.097, p < .0001). Adding PRS‐5 did not significantly increase predictive performance. Findings were consistent in individuals with obesity, diabetes, or alcohol risk use, and regardless of whether gamma‐glutamyltransferase was used in the CLivD score. Conclusion A combination of ELF and CLivD score predicts liver‐related outcomes significantly better than the ELF test alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左左发布了新的文献求助10
1秒前
执着的怜寒应助哈哈哈haha采纳,获得40
1秒前
Cassie完成签到 ,获得积分10
2秒前
2秒前
雄i完成签到,获得积分10
2秒前
Chenly完成签到,获得积分10
3秒前
科目三应助韭黄采纳,获得10
3秒前
3秒前
轻松笙发布了新的文献求助10
3秒前
5秒前
5秒前
a1oft发布了新的文献求助10
6秒前
觅桃乌龙完成签到,获得积分10
6秒前
7秒前
melodyezi发布了新的文献求助10
8秒前
8秒前
FFFFFFF应助柚子采纳,获得10
8秒前
9℃发布了新的文献求助10
8秒前
MailkMonk发布了新的文献求助10
8秒前
ZQ完成签到,获得积分10
8秒前
8秒前
wcy发布了新的文献求助10
9秒前
9秒前
尹博士完成签到,获得积分10
9秒前
迟大猫应助周士乐采纳,获得10
10秒前
追寻的筝发布了新的文献求助10
10秒前
喜洋洋发布了新的文献求助10
10秒前
NANA完成签到,获得积分10
10秒前
乐乐应助协和_子鱼采纳,获得10
10秒前
淇淇完成签到,获得积分10
11秒前
11秒前
luuuuuing完成签到,获得积分10
11秒前
沉静的迎荷完成签到,获得积分10
12秒前
天天快乐应助BreezyGallery采纳,获得10
13秒前
13秒前
13秒前
FashionBoy应助MailkMonk采纳,获得10
14秒前
clm发布了新的文献求助10
15秒前
逢强必赢完成签到,获得积分10
15秒前
科研通AI2S应助开朗的慕儿采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759