Predicting Surgical Experience After Robotic Nerve-sparing Radical Prostatectomy Simulation Using a Machine Learning–based Multimodal Analysis of Objective Performance Metrics

医学 图书馆学 艺术史 计算机科学 艺术
作者
Nathan Schuler,Lauren Shepard,Aaron Saxton,Jillian Russo,Daniel Merro Johnston,Patrick Saba,Tyler Holler,Andrea Smith,Sue Kulason,Andrew J. Yee,Ahmed Ghazi
出处
期刊:Urology Practice [Ovid Technologies (Wolters Kluwer)]
卷期号:10 (5): 447-455 被引量:5
标识
DOI:10.1097/upj.0000000000000426
摘要

Machine learning methods have emerged as objective tools to evaluate operative performance in urological procedures. Our objectives were to establish machine learning-based methods for predicting surgeon caseload for nerve-sparing robot-assisted radical prostatectomy using our validated hydrogel-based simulation platform and identify potential metrics of surgical expertise.Video, robotic kinematics, and force sensor data were collected from 35 board-certified urologists at the 2022 AUA conference. Video was annotated for surgical gestures. Objective performance indicators were derived from robotic system kinematic data. Force metrics were calculated from hydrogel model integrated sensors. Data were fitted to 3 supervised machine learning models-logistic regression, support vector machine, and k-nearest neighbors-which were used to predict procedure-specific learning curve proficiency. Recursive feature elimination was used to optimize the best performing model.Logistic regression predicted caseload with the highest AUC score for 5/7 possible data combinations (force, 64%; objective performance indicators + gestures, 94%; objective performance indicators + force, 90%; gestures + force, 93%; objective performance indicators + gestures + force, 94%). Support vector machine predicted the highest AUC score for objective performance indicators (82%) and gestures (94%). Logistic regression with recursive feature elimination was the most effective model reaching 96% AUC in predicting case-specific experience. Most contributory features were identified across all model types.We have created a machine learning-based algorithm utilizing a novel combination of objective performance indicators, gesture analysis, and integrated force metrics to predict surgical experience, capable of discriminating between surgeons with low or high robot-assisted radical prostatectomy caseload with 96% AUC in a standardized, simulation-based environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zheng能量完成签到,获得积分10
1秒前
SUN发布了新的文献求助10
1秒前
2秒前
xiangpimei完成签到 ,获得积分10
2秒前
淡淡816完成签到,获得积分10
2秒前
gc发布了新的文献求助30
3秒前
3秒前
seattle发布了新的文献求助10
3秒前
ch3oh完成签到,获得积分10
3秒前
hetao286发布了新的文献求助10
3秒前
zzy发布了新的文献求助10
4秒前
CipherSage应助qian采纳,获得10
4秒前
4秒前
4秒前
6秒前
TK完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
852应助嘻嘻采纳,获得10
8秒前
jcm发布了新的文献求助10
9秒前
贤来无事完成签到 ,获得积分10
10秒前
安静的凌萱完成签到,获得积分10
10秒前
10秒前
10秒前
Yu发布了新的文献求助10
10秒前
11发布了新的文献求助10
10秒前
gpy应助zzy采纳,获得10
11秒前
11秒前
Orange应助么么叽采纳,获得10
12秒前
LL应助研新采纳,获得10
12秒前
科目三应助SUN采纳,获得10
12秒前
天宇发布了新的文献求助10
13秒前
元小夏发布了新的文献求助20
13秒前
wwwying发布了新的文献求助10
14秒前
14秒前
sevenseven发布了新的文献求助10
14秒前
15秒前
淡淡红茶发布了新的文献求助10
16秒前
man应助MC采纳,获得20
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563859
求助须知:如何正确求助?哪些是违规求助? 3137060
关于积分的说明 9420785
捐赠科研通 2837499
什么是DOI,文献DOI怎么找? 1559874
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717187