Ensemble Learning for Disease Prediction: A Review

集成学习 Boosting(机器学习) 机器学习 计算机科学 人工智能 集合预报 堆积 分类器(UML) 疾病 随机森林 医学 病理 物理 核磁共振
作者
Palak Mahajan,Shahadat Uddin,Farshid Hajati,Mohammad Ali Moni
出处
期刊:Healthcare [MDPI AG]
卷期号:11 (12): 1808-1808 被引量:35
标识
DOI:10.3390/healthcare11121808
摘要

Machine learning models are used to create and enhance various disease prediction frameworks. Ensemble learning is a machine learning technique that combines multiple classifiers to improve performance by making more accurate predictions than a single classifier. Although numerous studies have employed ensemble approaches for disease prediction, there is a lack of thorough assessment of commonly used ensemble approaches against highly researched diseases. Consequently, this study aims to identify significant trends in the performance accuracies of ensemble techniques (i.e., bagging, boosting, stacking, and voting) against five hugely researched diseases (i.e., diabetes, skin disease, kidney disease, liver disease, and heart conditions). Using a well-defined search strategy, we first identified 45 articles from the current literature that applied two or more of the four ensemble approaches to any of these five diseases and were published in 2016-2023. Although stacking has been used the fewest number of times (23) compared with bagging (41) and boosting (37), it showed the most accurate performance the most times (19 out of 23). The voting approach is the second-best ensemble approach, as revealed in this review. Stacking always revealed the most accurate performance in the reviewed articles for skin disease and diabetes. Bagging demonstrated the best performance for kidney disease (five out of six times) and boosting for liver and diabetes (four out of six times). The results show that stacking has demonstrated greater accuracy in disease prediction than the other three candidate algorithms. Our study also demonstrates variability in the perceived performance of different ensemble approaches against frequently used disease datasets. The findings of this work will assist researchers in better understanding current trends and hotspots in disease prediction models that employ ensemble learning, as well as in determining a more suitable ensemble model for predictive disease analytics. This article also discusses variability in the perceived performance of different ensemble approaches against frequently used disease datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助djbj2022采纳,获得10
刚刚
和谐板栗完成签到 ,获得积分10
刚刚
luanzhaohui完成签到,获得积分10
3秒前
小赞发布了新的文献求助10
3秒前
老迟到的十八完成签到,获得积分10
4秒前
木樰完成签到,获得积分10
5秒前
勤恳的雪卉完成签到,获得积分10
6秒前
雨辰发布了新的文献求助10
6秒前
6秒前
微笑驳发布了新的文献求助10
7秒前
香蕉觅云应助hamzhang0426采纳,获得10
7秒前
sss完成签到,获得积分10
8秒前
8秒前
yry完成签到,获得积分10
9秒前
9秒前
尊敬飞丹完成签到,获得积分10
10秒前
12秒前
djbj2022发布了新的文献求助10
13秒前
13秒前
yoru16发布了新的文献求助10
13秒前
CipherSage应助科科采纳,获得10
15秒前
廖程完成签到 ,获得积分10
15秒前
LUCKY发布了新的文献求助10
16秒前
16秒前
元谷雪应助句号采纳,获得10
16秒前
wanci应助zhangnan采纳,获得10
17秒前
17秒前
满当当完成签到,获得积分10
18秒前
heyan完成签到,获得积分10
19秒前
竹筏过海应助铠甲勇士采纳,获得30
20秒前
hamzhang0426发布了新的文献求助10
21秒前
22秒前
我要赶快毕业完成签到,获得积分10
22秒前
25秒前
淙淙柔水完成签到,获得积分0
25秒前
fox199753206完成签到,获得积分10
26秒前
26秒前
爆米花应助fpbovo采纳,获得10
26秒前
27秒前
lemon完成签到,获得积分10
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790878
关于积分的说明 7796853
捐赠科研通 2447242
什么是DOI,文献DOI怎么找? 1301754
科研通“疑难数据库(出版商)”最低求助积分说明 626336
版权声明 601194