Ensemble Learning for Disease Prediction: A Review

集成学习 Boosting(机器学习) 机器学习 计算机科学 人工智能 集合预报 堆积 分类器(UML) 疾病 随机森林 医学 病理 核磁共振 物理
作者
Palak Mahajan,Shahadat Uddin,Farshid Hajati,Mohammad Ali Moni
出处
期刊:Healthcare [Multidisciplinary Digital Publishing Institute]
卷期号:11 (12): 1808-1808 被引量:35
标识
DOI:10.3390/healthcare11121808
摘要

Machine learning models are used to create and enhance various disease prediction frameworks. Ensemble learning is a machine learning technique that combines multiple classifiers to improve performance by making more accurate predictions than a single classifier. Although numerous studies have employed ensemble approaches for disease prediction, there is a lack of thorough assessment of commonly used ensemble approaches against highly researched diseases. Consequently, this study aims to identify significant trends in the performance accuracies of ensemble techniques (i.e., bagging, boosting, stacking, and voting) against five hugely researched diseases (i.e., diabetes, skin disease, kidney disease, liver disease, and heart conditions). Using a well-defined search strategy, we first identified 45 articles from the current literature that applied two or more of the four ensemble approaches to any of these five diseases and were published in 2016-2023. Although stacking has been used the fewest number of times (23) compared with bagging (41) and boosting (37), it showed the most accurate performance the most times (19 out of 23). The voting approach is the second-best ensemble approach, as revealed in this review. Stacking always revealed the most accurate performance in the reviewed articles for skin disease and diabetes. Bagging demonstrated the best performance for kidney disease (five out of six times) and boosting for liver and diabetes (four out of six times). The results show that stacking has demonstrated greater accuracy in disease prediction than the other three candidate algorithms. Our study also demonstrates variability in the perceived performance of different ensemble approaches against frequently used disease datasets. The findings of this work will assist researchers in better understanding current trends and hotspots in disease prediction models that employ ensemble learning, as well as in determining a more suitable ensemble model for predictive disease analytics. This article also discusses variability in the perceived performance of different ensemble approaches against frequently used disease datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
茶送白粥应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
王王的苏应助科研通管家采纳,获得10
1秒前
1秒前
吴祥坤发布了新的文献求助10
1秒前
SciGPT应助桃真心采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
科目三应助科研通管家采纳,获得10
2秒前
白羊完成签到,获得积分20
2秒前
2秒前
2秒前
zsfxqq完成签到 ,获得积分10
2秒前
pluto应助科研通管家采纳,获得50
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
科研助手6应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
唐唐发布了新的文献求助10
3秒前
浪而而发布了新的文献求助10
4秒前
英姑应助Zu采纳,获得10
4秒前
现代子默发布了新的文献求助10
4秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961767
求助须知:如何正确求助?哪些是违规求助? 3508099
关于积分的说明 11139632
捐赠科研通 3240798
什么是DOI,文献DOI怎么找? 1791052
邀请新用户注册赠送积分活动 872720
科研通“疑难数据库(出版商)”最低求助积分说明 803344