An Adversarial Robust Behavior Sequence Anomaly Detection Approach Based on Critical Behavior Unit Learning

计算机科学 人工智能 稳健性(进化) 对抗制 异常检测 深度学习 机器学习 恶意软件 语义学(计算机科学) 序列学习 计算机安全 生物化学 基因 化学 程序设计语言
作者
Dongyang Zhan,Kai Tan,Lin Ye,Xiangzhan Yu,Hongli Zhang,Zheng He
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:72 (11): 3286-3299 被引量:2
标识
DOI:10.1109/tc.2023.3292001
摘要

Sequential deep learning models (e.g., RNN and LSTM) can learn the sequence features of software behaviors, such as API or syscall sequences. However, recent studies have shown that these deep learning-based approaches are vulnerable to adversarial samples. Attackers can use adversarial samples to change the sequential characteristics of behavior sequences and mislead malware classifiers. In this paper, an adversarial robustness anomaly detection method based on the analysis of behavior units is proposed to overcome this problem. We extract related behaviors that usually perform a behavior intention as a behavior unit, which contains the representative semantic information of local behaviors and can be used to improve the robustness of behavior analysis. By learning the overall semantics of each behavior unit and the contextual relationships among behavior units based on a multilevel deep learning model, our approach can mitigate perturbation attacks that target local and large-scale behaviors. In addition, our approach can be applied to both low-level and high-level behavior logs (e.g., API and syscall logs). The experimental results show that our approach outperforms all the compared methods, which indicates that our approach has better performance against obfuscation attacks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kdfdds发布了新的文献求助10
刚刚
小糊涂发布了新的文献求助10
刚刚
刚刚
刚刚
李凯完成签到,获得积分20
刚刚
惜涵发布了新的文献求助10
1秒前
1237发布了新的文献求助30
1秒前
浮游应助阿十采纳,获得10
1秒前
平生欢发布了新的文献求助10
1秒前
天真小蚂蚁完成签到,获得积分10
2秒前
坚定芷烟完成签到,获得积分10
2秒前
3秒前
liuhuayaxi发布了新的文献求助20
3秒前
caigou发布了新的文献求助10
3秒前
执着的飞荷完成签到,获得积分10
4秒前
活力的青旋完成签到 ,获得积分10
4秒前
4秒前
wangly发布了新的文献求助10
5秒前
亚鹏发布了新的文献求助10
5秒前
6秒前
KQ发布了新的文献求助10
6秒前
dropofwater完成签到,获得积分10
6秒前
FRANKFANG发布了新的文献求助30
6秒前
guulee完成签到,获得积分10
6秒前
小蓝莓完成签到,获得积分10
6秒前
bkagyin应助小卡拉米采纳,获得10
6秒前
7秒前
7秒前
wang完成签到,获得积分10
7秒前
7秒前
8秒前
科研通AI2S应助liu采纳,获得20
8秒前
8秒前
晓风残月完成签到,获得积分10
9秒前
9秒前
酷波er应助kdfdds采纳,获得10
9秒前
桐桐应助xiaojinzi采纳,获得10
9秒前
9秒前
卡卡西西西完成签到,获得积分10
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233