An Adversarial Robust Behavior Sequence Anomaly Detection Approach Based on Critical Behavior Unit Learning

计算机科学 人工智能 稳健性(进化) 对抗制 异常检测 深度学习 机器学习 恶意软件 语义学(计算机科学) 序列学习 计算机安全 生物化学 基因 化学 程序设计语言
作者
Dongyang Zhan,Kai Tan,Lin Ye,Xiangzhan Yu,Hongli Zhang,Zheng He
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:72 (11): 3286-3299 被引量:2
标识
DOI:10.1109/tc.2023.3292001
摘要

Sequential deep learning models (e.g., RNN and LSTM) can learn the sequence features of software behaviors, such as API or syscall sequences. However, recent studies have shown that these deep learning-based approaches are vulnerable to adversarial samples. Attackers can use adversarial samples to change the sequential characteristics of behavior sequences and mislead malware classifiers. In this paper, an adversarial robustness anomaly detection method based on the analysis of behavior units is proposed to overcome this problem. We extract related behaviors that usually perform a behavior intention as a behavior unit, which contains the representative semantic information of local behaviors and can be used to improve the robustness of behavior analysis. By learning the overall semantics of each behavior unit and the contextual relationships among behavior units based on a multilevel deep learning model, our approach can mitigate perturbation attacks that target local and large-scale behaviors. In addition, our approach can be applied to both low-level and high-level behavior logs (e.g., API and syscall logs). The experimental results show that our approach outperforms all the compared methods, which indicates that our approach has better performance against obfuscation attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助小甜饼采纳,获得10
刚刚
2秒前
4秒前
群山完成签到 ,获得积分10
5秒前
8秒前
欣喜的雪青完成签到 ,获得积分10
8秒前
追寻河马完成签到,获得积分10
8秒前
zoe发布了新的文献求助10
8秒前
9秒前
兜兜完成签到,获得积分10
10秒前
科研通AI5应助虫虫采纳,获得10
13秒前
nfei发布了新的文献求助10
14秒前
插座完成签到,获得积分20
15秒前
舒心莫言完成签到,获得积分10
15秒前
小甜饼发布了新的文献求助10
16秒前
浮游应助Yz_采纳,获得10
17秒前
17秒前
18秒前
任性的咖啡完成签到,获得积分20
19秒前
Kevin完成签到,获得积分10
20秒前
李宏梅完成签到,获得积分10
21秒前
暮沐晓光完成签到,获得积分10
21秒前
闪闪的夜阑完成签到 ,获得积分10
21秒前
yyy发布了新的文献求助10
22秒前
scot发布了新的文献求助10
23秒前
23秒前
啦啦啦啦完成签到,获得积分10
25秒前
26秒前
27秒前
汉堡包应助感动水杯采纳,获得10
28秒前
李fr发布了新的文献求助10
28秒前
yyy完成签到,获得积分20
28秒前
29秒前
wu发布了新的文献求助10
29秒前
29秒前
shipengfei应助Fanflyer采纳,获得20
29秒前
英勇真发布了新的文献求助10
30秒前
wanci应助禹映安采纳,获得10
30秒前
zoe发布了新的文献求助10
31秒前
毅可爱完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4545926
求助须知:如何正确求助?哪些是违规求助? 3977396
关于积分的说明 12316211
捐赠科研通 3645739
什么是DOI,文献DOI怎么找? 2007732
邀请新用户注册赠送积分活动 1043308
科研通“疑难数据库(出版商)”最低求助积分说明 932103