An Adversarial Robust Behavior Sequence Anomaly Detection Approach Based on Critical Behavior Unit Learning

计算机科学 人工智能 稳健性(进化) 对抗制 异常检测 深度学习 机器学习 恶意软件 语义学(计算机科学) 序列学习 计算机安全 生物化学 基因 化学 程序设计语言
作者
Dongyang Zhan,Kai Tan,Lin Ye,Xiangzhan Yu,Hongli Zhang,Zheng He
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:72 (11): 3286-3299 被引量:2
标识
DOI:10.1109/tc.2023.3292001
摘要

Sequential deep learning models (e.g., RNN and LSTM) can learn the sequence features of software behaviors, such as API or syscall sequences. However, recent studies have shown that these deep learning-based approaches are vulnerable to adversarial samples. Attackers can use adversarial samples to change the sequential characteristics of behavior sequences and mislead malware classifiers. In this paper, an adversarial robustness anomaly detection method based on the analysis of behavior units is proposed to overcome this problem. We extract related behaviors that usually perform a behavior intention as a behavior unit, which contains the representative semantic information of local behaviors and can be used to improve the robustness of behavior analysis. By learning the overall semantics of each behavior unit and the contextual relationships among behavior units based on a multilevel deep learning model, our approach can mitigate perturbation attacks that target local and large-scale behaviors. In addition, our approach can be applied to both low-level and high-level behavior logs (e.g., API and syscall logs). The experimental results show that our approach outperforms all the compared methods, which indicates that our approach has better performance against obfuscation attacks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助说好不吃肥肉的采纳,获得10
1秒前
zylt50发布了新的文献求助10
1秒前
2秒前
Criminology34应助椰子水采纳,获得10
2秒前
2秒前
2秒前
wyy关注了科研通微信公众号
3秒前
3秒前
别当真发布了新的文献求助10
3秒前
David发布了新的文献求助10
4秒前
老高完成签到 ,获得积分10
4秒前
4秒前
陈艺鹏完成签到,获得积分10
5秒前
yyy发布了新的文献求助10
5秒前
5秒前
上官若男应助哈哈哈哈采纳,获得10
7秒前
7秒前
麻喽完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
失眠雨雪完成签到 ,获得积分10
10秒前
我要发nature完成签到,获得积分10
10秒前
Allen0520完成签到,获得积分10
10秒前
hsdhfsjbier发布了新的文献求助10
11秒前
11秒前
考马斯亮蓝完成签到 ,获得积分10
11秒前
12秒前
稳重一鸣发布了新的文献求助10
12秒前
易怀亮完成签到,获得积分10
13秒前
13秒前
核动力驴应助忠诚卫士采纳,获得10
15秒前
15秒前
16秒前
16秒前
17秒前
lc发布了新的文献求助30
17秒前
鳗鱼雪莲完成签到,获得积分10
17秒前
17秒前
搜集达人应助温暖的南霜采纳,获得10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633272
求助须知:如何正确求助?哪些是违规求助? 4728777
关于积分的说明 14985477
捐赠科研通 4791228
什么是DOI,文献DOI怎么找? 2558809
邀请新用户注册赠送积分活动 1519258
关于科研通互助平台的介绍 1479548