An Adversarial Robust Behavior Sequence Anomaly Detection Approach Based on Critical Behavior Unit Learning

计算机科学 人工智能 稳健性(进化) 对抗制 异常检测 深度学习 机器学习 恶意软件 语义学(计算机科学) 序列学习 计算机安全 生物化学 基因 化学 程序设计语言
作者
Dongyang Zhan,Kai Tan,Lin Ye,Xiangzhan Yu,Hongli Zhang,Zheng He
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:72 (11): 3286-3299 被引量:2
标识
DOI:10.1109/tc.2023.3292001
摘要

Sequential deep learning models (e.g., RNN and LSTM) can learn the sequence features of software behaviors, such as API or syscall sequences. However, recent studies have shown that these deep learning-based approaches are vulnerable to adversarial samples. Attackers can use adversarial samples to change the sequential characteristics of behavior sequences and mislead malware classifiers. In this paper, an adversarial robustness anomaly detection method based on the analysis of behavior units is proposed to overcome this problem. We extract related behaviors that usually perform a behavior intention as a behavior unit, which contains the representative semantic information of local behaviors and can be used to improve the robustness of behavior analysis. By learning the overall semantics of each behavior unit and the contextual relationships among behavior units based on a multilevel deep learning model, our approach can mitigate perturbation attacks that target local and large-scale behaviors. In addition, our approach can be applied to both low-level and high-level behavior logs (e.g., API and syscall logs). The experimental results show that our approach outperforms all the compared methods, which indicates that our approach has better performance against obfuscation attacks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
刚刚
刚刚
负责玉米发布了新的文献求助10
刚刚
Gauss应助炫啊Xuan采纳,获得30
1秒前
April完成签到,获得积分20
2秒前
bkagyin应助令尊是我犬子采纳,获得10
2秒前
2秒前
vv发布了新的文献求助10
3秒前
情怀应助开放的冷雁采纳,获得10
3秒前
3秒前
orange发布了新的文献求助10
4秒前
跳跃小伙完成签到 ,获得积分10
5秒前
6秒前
木木完成签到,获得积分10
7秒前
研友_LpvElZ完成签到,获得积分10
7秒前
北斋完成签到,获得积分10
7秒前
April发布了新的文献求助10
7秒前
搜集达人应助嘿嘿嘿采纳,获得10
7秒前
8秒前
9秒前
Awcworkers发布了新的文献求助10
9秒前
10秒前
ychuny发布了新的文献求助10
11秒前
王世缘发布了新的文献求助10
11秒前
11秒前
12秒前
烟花应助甜甜耶耶采纳,获得10
13秒前
14秒前
友好的飞薇完成签到,获得积分10
14秒前
核桃发布了新的文献求助10
15秒前
持满发布了新的文献求助10
16秒前
王世缘完成签到,获得积分10
16秒前
16秒前
543453发布了新的文献求助10
18秒前
18秒前
18秒前
科研通AI2S应助持满采纳,获得10
19秒前
SciGPT应助高兴书兰采纳,获得10
20秒前
mm发布了新的文献求助10
20秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501625
求助须知:如何正确求助?哪些是违规求助? 4597828
关于积分的说明 14461144
捐赠科研通 4531374
什么是DOI,文献DOI怎么找? 2483318
邀请新用户注册赠送积分活动 1466799
关于科研通互助平台的介绍 1439461