An Adversarial Robust Behavior Sequence Anomaly Detection Approach Based on Critical Behavior Unit Learning

计算机科学 人工智能 稳健性(进化) 对抗制 异常检测 深度学习 机器学习 恶意软件 语义学(计算机科学) 序列学习 计算机安全 生物化学 基因 化学 程序设计语言
作者
Dongyang Zhan,Kai Tan,Lin Ye,Xiangzhan Yu,Hongli Zhang,Zheng He
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:72 (11): 3286-3299 被引量:2
标识
DOI:10.1109/tc.2023.3292001
摘要

Sequential deep learning models (e.g., RNN and LSTM) can learn the sequence features of software behaviors, such as API or syscall sequences. However, recent studies have shown that these deep learning-based approaches are vulnerable to adversarial samples. Attackers can use adversarial samples to change the sequential characteristics of behavior sequences and mislead malware classifiers. In this paper, an adversarial robustness anomaly detection method based on the analysis of behavior units is proposed to overcome this problem. We extract related behaviors that usually perform a behavior intention as a behavior unit, which contains the representative semantic information of local behaviors and can be used to improve the robustness of behavior analysis. By learning the overall semantics of each behavior unit and the contextual relationships among behavior units based on a multilevel deep learning model, our approach can mitigate perturbation attacks that target local and large-scale behaviors. In addition, our approach can be applied to both low-level and high-level behavior logs (e.g., API and syscall logs). The experimental results show that our approach outperforms all the compared methods, which indicates that our approach has better performance against obfuscation attacks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Survivor发布了新的文献求助30
2秒前
彪壮的慕山完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
hy完成签到 ,获得积分10
5秒前
十九发布了新的文献求助10
5秒前
5秒前
米饭给米饭的求助进行了留言
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
harriet chen发布了新的文献求助10
6秒前
秋刀鱼完成签到,获得积分10
6秒前
6秒前
友好的驳发布了新的文献求助10
6秒前
6秒前
Yuki发布了新的文献求助10
7秒前
7秒前
幻昼发布了新的文献求助10
7秒前
我好困完成签到,获得积分10
7秒前
8秒前
马小翠发布了新的文献求助10
8秒前
清浅发布了新的文献求助10
9秒前
SebastianW发布了新的文献求助10
9秒前
zho关闭了zho文献求助
9秒前
NoraZibelin2002应助BJ_whc采纳,获得30
9秒前
9秒前
10秒前
研友_bZzO08完成签到,获得积分10
11秒前
11秒前
传奇3应助冷泠凛采纳,获得10
11秒前
陈隆发布了新的文献求助10
11秒前
陈明健发布了新的文献求助10
11秒前
CHOSEN1发布了新的文献求助10
12秒前
康康发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667386
求助须知:如何正确求助?哪些是违规求助? 4885345
关于积分的说明 15119791
捐赠科研通 4826177
什么是DOI,文献DOI怎么找? 2583805
邀请新用户注册赠送积分活动 1537947
关于科研通互助平台的介绍 1496059