META-Unet: Multi-Scale Efficient Transformer Attention Unet for Fast and High-Accuracy Polyp Segmentation

分割 计算机科学 人工智能 编码器 图像分割 掷骰子 模式识别(心理学) 变压器 计算机视觉 工程类 电压 数学 几何学 操作系统 电气工程
作者
Huisi Wu,Zebin Zhao,Zhaoze Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 4117-4128 被引量:30
标识
DOI:10.1109/tase.2023.3292373
摘要

Polyp segmentation plays an important role in preventing Colorectal cancer. Although Vision Transformer has been widely introduced in medical image segmentation to compensate the limitations of traditional CNN in modeling global context, its shortcomings in learning the fine-detailed features and the heavy computation cost also hinder its application in challenging polyp segmentation due to the various shapes and sizes of polyps, the low-intensity contrast between polyps and surrounding tissues, and the inherent real-time requirement. In this paper, we propose a multi-scale efficient transformer attention (META) mechanism for fast and high-accuracy polyp segmentation, where efficient transformer blocks are employed to generate multi-scale element-wise attentions for adaptive feature fusion in the famous U-shape encoder-decoder architecture. Specifically, our META mechanism includes two branches to capture multi-scale long-term dependencies, which are implemented via two efficient transformer blocks with different resolutions. The local branch is used to capture a relatively smaller transform attention under a relatively lower resolution, while the global branch is used to capture high-resolution transform attention. The final poly segmentation results are progressively integrated based on the META mechanism in each layer of the decoder. Extensive experiments are conducted on four polyp segmentation datasets (CVC-ClinicDB, Endoscenestill, Kvasir-SEG and ETIS-Larib) to demonstrate its advantages, consistently outperforming different competitors. While using ResNet34 as backbones, it can achieve 85.78% IoU and 92.03% Dice, 88.99% IoU and 93.85% Dice, 86.42% IoU and 91.86% Dice respectively in CVC-ClinicDB, Endoscenestill, and Kvasir-SEG, and a speed of 98 FPS at the input size of $3 \times 512 \times 512$ on a NVIDIA GeForce RTX 3090 card. The code is available at https://github.com/szuzzb/META-Unet. Note to Practitioners —Automatic polyp segmentation is a crucial step of polyp recognition and diagnostic of colonoscopy, which usually require both high-accuracy and real-time performance. This article proposes a novel polyp segmentation method, namely META-Unet, by modeling multi-scale attention maps effectively and efficiently based on a novel multi-scale efficient transformer attention (META) mechanism, for faster and higher-accuracy polyp segmentation. We evaluate our META-Unet on four public polyp image segmentation datasets (CVC-ClinicDB, Endoscenestill, Kvasir-SEG and ETIS-Larib). Comprehensive experimental results validate its outstanding performance with a better balance in both accuracy and inference speed. The proposed META mechanism is potentially to be embedded in various deep learning frameworks and facilitates more computer-aided applications in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左丘幼旋1完成签到,获得积分10
刚刚
无奈的胡萝卜完成签到,获得积分10
1秒前
1秒前
科研通AI5应助优雅的琳采纳,获得10
1秒前
机灵的囧完成签到,获得积分10
2秒前
时光完成签到,获得积分10
2秒前
七大洋的风完成签到,获得积分10
2秒前
左丘幼旋1发布了新的文献求助10
3秒前
amumu发布了新的文献求助10
3秒前
三金发布了新的文献求助10
3秒前
5秒前
kingwill应助明天更好采纳,获得20
5秒前
6秒前
乐乐应助gaos采纳,获得10
6秒前
lzy完成签到,获得积分10
6秒前
阿烨发布了新的文献求助10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
7秒前
gcc应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
小二郎应助sure采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
yin完成签到,获得积分10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
8秒前
英姑应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678