META-Unet: Multi-Scale Efficient Transformer Attention Unet for Fast and High-Accuracy Polyp Segmentation

分割 计算机科学 人工智能 编码器 图像分割 掷骰子 模式识别(心理学) 变压器 计算机视觉 工程类 电压 数学 几何学 操作系统 电气工程
作者
Huisi Wu,Zebin Zhao,Zhaoze Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 4117-4128 被引量:44
标识
DOI:10.1109/tase.2023.3292373
摘要

Polyp segmentation plays an important role in preventing Colorectal cancer. Although Vision Transformer has been widely introduced in medical image segmentation to compensate the limitations of traditional CNN in modeling global context, its shortcomings in learning the fine-detailed features and the heavy computation cost also hinder its application in challenging polyp segmentation due to the various shapes and sizes of polyps, the low-intensity contrast between polyps and surrounding tissues, and the inherent real-time requirement. In this paper, we propose a multi-scale efficient transformer attention (META) mechanism for fast and high-accuracy polyp segmentation, where efficient transformer blocks are employed to generate multi-scale element-wise attentions for adaptive feature fusion in the famous U-shape encoder-decoder architecture. Specifically, our META mechanism includes two branches to capture multi-scale long-term dependencies, which are implemented via two efficient transformer blocks with different resolutions. The local branch is used to capture a relatively smaller transform attention under a relatively lower resolution, while the global branch is used to capture high-resolution transform attention. The final poly segmentation results are progressively integrated based on the META mechanism in each layer of the decoder. Extensive experiments are conducted on four polyp segmentation datasets (CVC-ClinicDB, Endoscenestill, Kvasir-SEG and ETIS-Larib) to demonstrate its advantages, consistently outperforming different competitors. While using ResNet34 as backbones, it can achieve 85.78% IoU and 92.03% Dice, 88.99% IoU and 93.85% Dice, 86.42% IoU and 91.86% Dice respectively in CVC-ClinicDB, Endoscenestill, and Kvasir-SEG, and a speed of 98 FPS at the input size of $3 \times 512 \times 512$ on a NVIDIA GeForce RTX 3090 card. The code is available at https://github.com/szuzzb/META-Unet. Note to Practitioners —Automatic polyp segmentation is a crucial step of polyp recognition and diagnostic of colonoscopy, which usually require both high-accuracy and real-time performance. This article proposes a novel polyp segmentation method, namely META-Unet, by modeling multi-scale attention maps effectively and efficiently based on a novel multi-scale efficient transformer attention (META) mechanism, for faster and higher-accuracy polyp segmentation. We evaluate our META-Unet on four public polyp image segmentation datasets (CVC-ClinicDB, Endoscenestill, Kvasir-SEG and ETIS-Larib). Comprehensive experimental results validate its outstanding performance with a better balance in both accuracy and inference speed. The proposed META mechanism is potentially to be embedded in various deep learning frameworks and facilitates more computer-aided applications in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清新的苑博完成签到,获得积分10
刚刚
噬菌体内溶素完成签到,获得积分10
1秒前
慕青应助o30采纳,获得10
1秒前
1秒前
1秒前
night发布了新的文献求助10
1秒前
2秒前
学习使我快乐完成签到 ,获得积分10
2秒前
2秒前
2秒前
谦让的焱发布了新的文献求助10
2秒前
2秒前
义气鲂发布了新的文献求助10
3秒前
11发布了新的文献求助10
3秒前
3秒前
从容的完成签到 ,获得积分10
4秒前
4秒前
两是ssyycc完成签到,获得积分10
4秒前
4秒前
faye发布了新的文献求助10
4秒前
4秒前
快乐凝竹发布了新的文献求助20
5秒前
去以六月息完成签到 ,获得积分10
5秒前
为你博弈发布了新的文献求助10
5秒前
领导范儿应助小刺猬采纳,获得10
5秒前
周志轩66发布了新的文献求助10
6秒前
宛海发布了新的文献求助10
6秒前
6秒前
if发布了新的文献求助10
7秒前
偲偲偲偲偲完成签到,获得积分10
7秒前
JamesPei应助李雪蒙采纳,获得10
8秒前
8秒前
李健应助WEI采纳,获得10
8秒前
完美世界应助活泼的南风采纳,获得10
8秒前
iu完成签到,获得积分10
9秒前
wy发布了新的文献求助10
9秒前
9秒前
yznfly应助Rosaline采纳,获得30
10秒前
Jasper应助hanzhangjian采纳,获得10
10秒前
my发布了新的文献求助10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969335
求助须知:如何正确求助?哪些是违规求助? 3514162
关于积分的说明 11172430
捐赠科研通 3249456
什么是DOI,文献DOI怎么找? 1794853
邀请新用户注册赠送积分活动 875437
科研通“疑难数据库(出版商)”最低求助积分说明 804809