META-Unet: Multi-Scale Efficient Transformer Attention Unet for Fast and High-Accuracy Polyp Segmentation

分割 计算机科学 人工智能 编码器 图像分割 掷骰子 模式识别(心理学) 变压器 计算机视觉 工程类 电压 数学 几何学 操作系统 电气工程
作者
Huisi Wu,Zebin Zhao,Zhaoze Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 4117-4128 被引量:44
标识
DOI:10.1109/tase.2023.3292373
摘要

Polyp segmentation plays an important role in preventing Colorectal cancer. Although Vision Transformer has been widely introduced in medical image segmentation to compensate the limitations of traditional CNN in modeling global context, its shortcomings in learning the fine-detailed features and the heavy computation cost also hinder its application in challenging polyp segmentation due to the various shapes and sizes of polyps, the low-intensity contrast between polyps and surrounding tissues, and the inherent real-time requirement. In this paper, we propose a multi-scale efficient transformer attention (META) mechanism for fast and high-accuracy polyp segmentation, where efficient transformer blocks are employed to generate multi-scale element-wise attentions for adaptive feature fusion in the famous U-shape encoder-decoder architecture. Specifically, our META mechanism includes two branches to capture multi-scale long-term dependencies, which are implemented via two efficient transformer blocks with different resolutions. The local branch is used to capture a relatively smaller transform attention under a relatively lower resolution, while the global branch is used to capture high-resolution transform attention. The final poly segmentation results are progressively integrated based on the META mechanism in each layer of the decoder. Extensive experiments are conducted on four polyp segmentation datasets (CVC-ClinicDB, Endoscenestill, Kvasir-SEG and ETIS-Larib) to demonstrate its advantages, consistently outperforming different competitors. While using ResNet34 as backbones, it can achieve 85.78% IoU and 92.03% Dice, 88.99% IoU and 93.85% Dice, 86.42% IoU and 91.86% Dice respectively in CVC-ClinicDB, Endoscenestill, and Kvasir-SEG, and a speed of 98 FPS at the input size of $3 \times 512 \times 512$ on a NVIDIA GeForce RTX 3090 card. The code is available at https://github.com/szuzzb/META-Unet. Note to Practitioners —Automatic polyp segmentation is a crucial step of polyp recognition and diagnostic of colonoscopy, which usually require both high-accuracy and real-time performance. This article proposes a novel polyp segmentation method, namely META-Unet, by modeling multi-scale attention maps effectively and efficiently based on a novel multi-scale efficient transformer attention (META) mechanism, for faster and higher-accuracy polyp segmentation. We evaluate our META-Unet on four public polyp image segmentation datasets (CVC-ClinicDB, Endoscenestill, Kvasir-SEG and ETIS-Larib). Comprehensive experimental results validate its outstanding performance with a better balance in both accuracy and inference speed. The proposed META mechanism is potentially to be embedded in various deep learning frameworks and facilitates more computer-aided applications in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨染樱飞完成签到 ,获得积分10
1秒前
ont-tnt发布了新的文献求助10
1秒前
谦让小蚂蚁完成签到,获得积分10
1秒前
1秒前
1秒前
Michelle完成签到,获得积分10
2秒前
海白发布了新的文献求助10
2秒前
2秒前
tesla完成签到,获得积分10
4秒前
SciGPT应助体贴凌柏采纳,获得10
4秒前
慎二完成签到 ,获得积分10
4秒前
6秒前
慕容冷之完成签到,获得积分10
6秒前
6秒前
leo发布了新的文献求助10
7秒前
ont-tnt完成签到,获得积分10
7秒前
sxd完成签到,获得积分10
8秒前
Daisy完成签到 ,获得积分10
8秒前
嘉1612完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助angrymax采纳,获得10
9秒前
落尘发布了新的文献求助10
10秒前
学不懂数学应助小王采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
ROOKIE完成签到,获得积分10
11秒前
11秒前
阿胡发布了新的文献求助10
12秒前
12秒前
SYLH应助wodetaiyangLLL采纳,获得10
13秒前
loey完成签到,获得积分10
13秒前
等待的音响完成签到,获得积分10
13秒前
13秒前
孙非完成签到,获得积分10
13秒前
江小鱼在查文献完成签到,获得积分10
14秒前
静xixi完成签到,获得积分20
15秒前
就是躺完成签到 ,获得积分10
16秒前
16秒前
xcc完成签到,获得积分10
17秒前
目眩完成签到,获得积分10
17秒前
等待的花卷完成签到 ,获得积分10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029