已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

META-Unet: Multi-Scale Efficient Transformer Attention Unet for Fast and High-Accuracy Polyp Segmentation

分割 计算机科学 人工智能 编码器 图像分割 掷骰子 模式识别(心理学) 变压器 计算机视觉 工程类 电压 数学 几何学 电气工程 操作系统
作者
Huisi Wu,Zebin Zhao,Zhaoze Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 4117-4128 被引量:60
标识
DOI:10.1109/tase.2023.3292373
摘要

Polyp segmentation plays an important role in preventing Colorectal cancer. Although Vision Transformer has been widely introduced in medical image segmentation to compensate the limitations of traditional CNN in modeling global context, its shortcomings in learning the fine-detailed features and the heavy computation cost also hinder its application in challenging polyp segmentation due to the various shapes and sizes of polyps, the low-intensity contrast between polyps and surrounding tissues, and the inherent real-time requirement. In this paper, we propose a multi-scale efficient transformer attention (META) mechanism for fast and high-accuracy polyp segmentation, where efficient transformer blocks are employed to generate multi-scale element-wise attentions for adaptive feature fusion in the famous U-shape encoder-decoder architecture. Specifically, our META mechanism includes two branches to capture multi-scale long-term dependencies, which are implemented via two efficient transformer blocks with different resolutions. The local branch is used to capture a relatively smaller transform attention under a relatively lower resolution, while the global branch is used to capture high-resolution transform attention. The final poly segmentation results are progressively integrated based on the META mechanism in each layer of the decoder. Extensive experiments are conducted on four polyp segmentation datasets (CVC-ClinicDB, Endoscenestill, Kvasir-SEG and ETIS-Larib) to demonstrate its advantages, consistently outperforming different competitors. While using ResNet34 as backbones, it can achieve 85.78% IoU and 92.03% Dice, 88.99% IoU and 93.85% Dice, 86.42% IoU and 91.86% Dice respectively in CVC-ClinicDB, Endoscenestill, and Kvasir-SEG, and a speed of 98 FPS at the input size of $3 \times 512 \times 512$ on a NVIDIA GeForce RTX 3090 card. The code is available at https://github.com/szuzzb/META-Unet. Note to Practitioners —Automatic polyp segmentation is a crucial step of polyp recognition and diagnostic of colonoscopy, which usually require both high-accuracy and real-time performance. This article proposes a novel polyp segmentation method, namely META-Unet, by modeling multi-scale attention maps effectively and efficiently based on a novel multi-scale efficient transformer attention (META) mechanism, for faster and higher-accuracy polyp segmentation. We evaluate our META-Unet on four public polyp image segmentation datasets (CVC-ClinicDB, Endoscenestill, Kvasir-SEG and ETIS-Larib). Comprehensive experimental results validate its outstanding performance with a better balance in both accuracy and inference speed. The proposed META mechanism is potentially to be embedded in various deep learning frameworks and facilitates more computer-aided applications in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助50
刚刚
南北完成签到 ,获得积分10
刚刚
甜甜圈完成签到 ,获得积分10
3秒前
6秒前
8秒前
8秒前
wang完成签到 ,获得积分10
10秒前
科研通AI2S应助元谷雪采纳,获得10
12秒前
口合发布了新的文献求助10
13秒前
abc105发布了新的文献求助10
14秒前
14秒前
王一一发布了新的文献求助10
15秒前
汉堡包应助牛爱花采纳,获得10
15秒前
Litm完成签到 ,获得积分10
17秒前
BowieHuang应助super chan采纳,获得10
17秒前
Scout完成签到,获得积分10
20秒前
石幻枫发布了新的文献求助10
20秒前
20秒前
Sake完成签到,获得积分20
21秒前
BowieHuang应助口合采纳,获得10
21秒前
dglyl发布了新的文献求助30
23秒前
La完成签到 ,获得积分10
25秒前
25秒前
聪慧的乐驹完成签到,获得积分10
25秒前
小蘑菇应助王一一采纳,获得10
26秒前
30秒前
苗条的嫣完成签到,获得积分10
33秒前
开放从云完成签到 ,获得积分10
34秒前
37秒前
38秒前
英俊的铭应助萧子采纳,获得10
39秒前
bgt完成签到 ,获得积分10
40秒前
40秒前
犬来八荒发布了新的文献求助10
43秒前
丘比特应助彭凯采纳,获得10
43秒前
47秒前
耍酷夏彤完成签到,获得积分20
48秒前
qhcaywy发布了新的文献求助10
52秒前
杨子怡完成签到 ,获得积分10
52秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558171
求助须知:如何正确求助?哪些是违规求助? 4643177
关于积分的说明 14670639
捐赠科研通 4584605
什么是DOI,文献DOI怎么找? 2514971
邀请新用户注册赠送积分活动 1489087
关于科研通互助平台的介绍 1459733