Rice Plant Leaf Disease Detection and Classification Using Optimization Enabled Deep Learning

人工智能 深度学习 模式识别(心理学) 卷积神经网络 计算机科学 聚类分析 鉴定(生物学) 机器学习 植物 生物
作者
T. Daniya,S. Vigneshwari
出处
期刊:Journal of Environmental Informatics [International Society for Environmental Information Sciences]
被引量:1
标识
DOI:10.3808/jei.202300492
摘要

An automatic identification and classification of rice diseases are very important in the domain of agriculture. Deep learning (DL) is an effective research area in the identification of agriculture pattern identification where it can effectively resolve the issues of diseases identification. In this paper, a hybrid optimization algorithm is developed to categorize the plant diseases. The pre-processing is made using Region of Interest (ROI) extraction and the input image is created by combining the Rice plant dataset, and Rice disease dataset. The segmentation is accomplished using Deep fuzzy clustering. The features, like statistical features, entropy, Convolutional Neural Network (CNN) features, Local Optimal-Oriented Pattern (LOOP), and Local Gabor XOR Pattern (LGXP) is considered for extracting the appropriate features for further processing. The data augmentation is employed to enlarge the volume of extracted features. Then, the first level classification is made by deep neuro-fuzzy network (DNFN), which is trained using Rider Henry Gas Solubility Optimization (RHGSO) that categories into healthy and unhealthy plants. The RHGSO is the integration of Rider Optimization Algorithm (ROA) and Henry gas solubility optimization (HGSO). After that, second-level classification is made by a Deep residual network (DRN) that is tuned by RHGSO. Thus, the RHGSO-based DRN categorizes the unhealthy plants into Bacterial Leaf Blight (BLB), Blast, and Brown spot. Thus, the implementation of the proposed RHGSO-based deep learning approach offered better accuracy, sensitivity, specificity, and F1-score of 0.9304, 0.9459, 0.8383, and 0.9142.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助ZZzz采纳,获得10
刚刚
小马甲应助utopia采纳,获得10
刚刚
许嘉霖发布了新的文献求助10
1秒前
1秒前
1秒前
heyihao完成签到,获得积分10
1秒前
1秒前
调皮的火龙果完成签到,获得积分10
2秒前
4秒前
冥冥之极为昭昭应助Lynn采纳,获得10
4秒前
4秒前
4秒前
4秒前
直率书芹完成签到,获得积分10
4秒前
jie完成签到,获得积分10
5秒前
隐形千愁发布了新的文献求助10
5秒前
native发布了新的文献求助10
5秒前
希望天下0贩的0应助wergou采纳,获得10
5秒前
英俊的铭应助leesoon采纳,获得10
6秒前
烂漫的飞松完成签到,获得积分10
6秒前
6秒前
支妙完成签到,获得积分10
6秒前
asdasd发布了新的文献求助10
7秒前
汉堡包应助韩hqf采纳,获得10
7秒前
研友_VZG7GZ应助ayayaya采纳,获得10
7秒前
李健的小迷弟应助苦哈哈采纳,获得10
8秒前
9秒前
开放灵竹发布了新的文献求助10
9秒前
一介书生完成签到,获得积分10
9秒前
机智仙人掌完成签到,获得积分10
9秒前
9秒前
L112233发布了新的文献求助10
11秒前
JYH12138发布了新的文献求助10
11秒前
大有阳光发布了新的文献求助10
11秒前
11秒前
无风海发布了新的文献求助10
12秒前
hss完成签到,获得积分10
13秒前
云澈发布了新的文献求助10
13秒前
13秒前
CR7应助就晚安喽采纳,获得20
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978729
求助须知:如何正确求助?哪些是违规求助? 3522741
关于积分的说明 11214658
捐赠科研通 3260224
什么是DOI,文献DOI怎么找? 1799815
邀请新用户注册赠送积分活动 878676
科研通“疑难数据库(出版商)”最低求助积分说明 807052