Rice Plant Leaf Disease Detection and Classification Using Optimization Enabled Deep Learning

人工智能 深度学习 模式识别(心理学) 卷积神经网络 计算机科学 聚类分析 鉴定(生物学) 机器学习 植物 生物
作者
T. Daniya,S. Vigneshwari
出处
期刊:Journal of Environmental Informatics [International Society for Environmental Information Sciences]
被引量:1
标识
DOI:10.3808/jei.202300492
摘要

An automatic identification and classification of rice diseases are very important in the domain of agriculture. Deep learning (DL) is an effective research area in the identification of agriculture pattern identification where it can effectively resolve the issues of diseases identification. In this paper, a hybrid optimization algorithm is developed to categorize the plant diseases. The pre-processing is made using Region of Interest (ROI) extraction and the input image is created by combining the Rice plant dataset, and Rice disease dataset. The segmentation is accomplished using Deep fuzzy clustering. The features, like statistical features, entropy, Convolutional Neural Network (CNN) features, Local Optimal-Oriented Pattern (LOOP), and Local Gabor XOR Pattern (LGXP) is considered for extracting the appropriate features for further processing. The data augmentation is employed to enlarge the volume of extracted features. Then, the first level classification is made by deep neuro-fuzzy network (DNFN), which is trained using Rider Henry Gas Solubility Optimization (RHGSO) that categories into healthy and unhealthy plants. The RHGSO is the integration of Rider Optimization Algorithm (ROA) and Henry gas solubility optimization (HGSO). After that, second-level classification is made by a Deep residual network (DRN) that is tuned by RHGSO. Thus, the RHGSO-based DRN categorizes the unhealthy plants into Bacterial Leaf Blight (BLB), Blast, and Brown spot. Thus, the implementation of the proposed RHGSO-based deep learning approach offered better accuracy, sensitivity, specificity, and F1-score of 0.9304, 0.9459, 0.8383, and 0.9142.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Freedom完成签到,获得积分10
1秒前
shilong.yang完成签到,获得积分10
2秒前
JasperChan发布了新的文献求助10
3秒前
3秒前
陈得住气发布了新的文献求助10
4秒前
4秒前
樱桃猴子应助某某某采纳,获得10
4秒前
无花果应助某某某采纳,获得10
4秒前
爆米花应助某某某采纳,获得10
5秒前
5秒前
传奇3应助某某某采纳,获得10
5秒前
李健应助某某某采纳,获得10
5秒前
打打应助某某某采纳,获得10
5秒前
今后应助某某某采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
全能发文章完成签到,获得积分20
7秒前
8秒前
欧阳发布了新的文献求助10
8秒前
呼呼呼完成签到,获得积分10
9秒前
9秒前
烟花应助明亮的智宸采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
子车茗应助科研通管家采纳,获得20
10秒前
CZC发布了新的文献求助10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
希望天下0贩的0应助慧慧采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得30
10秒前
情怀应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
Singularity应助科研通管家采纳,获得10
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304868
求助须知:如何正确求助?哪些是违规求助? 2938834
关于积分的说明 8490078
捐赠科研通 2613283
什么是DOI,文献DOI怎么找? 1427315
科研通“疑难数据库(出版商)”最低求助积分说明 662925
邀请新用户注册赠送积分活动 647557