结构方程建模
蒙特卡罗方法
水准点(测量)
计算机科学
协方差
验证性因素分析
索引(排版)
计算
计量经济学
数据挖掘
统计
数学
算法
机器学习
程序设计语言
大地测量学
地理
作者
Melissa Gordon Wolf,Daniel McNeish
标识
DOI:10.1080/00273171.2022.2163476
摘要
To evaluate the fit of a confirmatory factor analysis model, researchers often rely on fit indices such as SRMR, RMSEA, and CFI. These indices are frequently compared to benchmark values of .08, .06, and .96, respectively, established by Hu and Bentler (Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55). However, these indices are affected by model characteristics and their sensitivity to misfit can change across models. Decisions about model fit can therefore be improved by tailoring cutoffs to each model. The methodological literature has proposed methods for deriving customized cutoffs, although it can require knowledge of linear algebra and Monte Carlo simulation. Given that many empirical researchers do not have training in these technical areas, empirical studies largely continue to rely on fixed benchmarks even though they are known to generalize poorly and can be poor arbiters of fit. To address this, this paper introduces the R package, dynamic, to make computation of dynamic fit index cutoffs (which are tailored to the user's model) more accessible to empirical researchers. dynamic heavily automatizes this process and only requires a lavaan object to automatically conduct several custom Monte Carlo simulations and output fit index cutoffs designed to be sensitive to misfit with the user's model characteristics.
科研通智能强力驱动
Strongly Powered by AbleSci AI