Multimodal pedestrian detection using metaheuristics with deep convolutional neural network in crowded scenes

计算机科学 人工智能 卷积神经网络 超参数 深度学习 行人检测 机器学习 元启发式 行人 模式识别(心理学) 计算机视觉 运输工程 工程类
作者
Deepak Kumar Jain,Xudong Zhao,Germán González-Almagro,Chenquan Gan,Ketan Kotecha
出处
期刊:Information Fusion [Elsevier BV]
卷期号:95: 401-414 被引量:15
标识
DOI:10.1016/j.inffus.2023.02.014
摘要

Pedestrian detection (PD) is a vital computer vision (CV) problem that is highly employed in several real-time applications, namely autonomous driving methods, robotics, and security observing methods. Simulated by deep learning (DL) approaches to the recognition of generic objects, several investigation mechanisms have attained maximum recognition accuracy for acceptable scale and non-blocked pedestrians. However, the detection efficiency needed to be improved for complex cases like rare pose samples, crowd scenes, and cases with worse visibility due to daytime or weather. Therefore, this study develops a multimodal pedestrian detection system in crowded scenes using metaheuristics and a deep convolutional neural network (MMPD-MDCNN) technique. The MMPD-MDCNN technique's goal is to identify pedestrians in crowd scenes using different deep-learning models effectively. The proposed MMPD-MDCNN technique integrates three deep learning models: the residual network (ResNet-50), Inception v3, and the capsule network (CapsNet). In addition, the Harris Hawks Optimization (HHO) algorithm is applied for optimal hyperparameter tuning of the deep learning models. For pedestrian detection, the MMPD-MDCNN technique uses the long short-term memory (LSTM) model, and its hyperparameters can be adjusted by the shark smell optimization (SSO) algorithm. To demonstrate the superior performance of the MMPD-MDCNN approach, A comprehensive set of simulations on the INRIA and UCSD datasets was performed to illustrate the superior performance of the MMPD-MDCNN approach. The experimental results suggest that the MMPD-MDCNN model performs well on both datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得20
1秒前
李健应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
科目三应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
LeiWeI发布了新的文献求助10
2秒前
2秒前
2秒前
hanchangcun发布了新的文献求助10
3秒前
靓丽初蓝发布了新的文献求助10
3秒前
yuchenmei发布了新的文献求助10
3秒前
jinzhen发布了新的文献求助10
4秒前
爱笑莞发布了新的文献求助10
4秒前
CodeCraft应助重要白开水采纳,获得10
4秒前
香蕉觅云应助精明芷巧采纳,获得10
4秒前
5秒前
5秒前
6秒前
阿尔法突触核蛋白完成签到,获得积分10
6秒前
leetaisan发布了新的文献求助30
6秒前
曾泰平发布了新的文献求助10
6秒前
solitude发布了新的文献求助10
6秒前
JUNJUN发布了新的文献求助10
7秒前
7秒前
7秒前
我是老大应助怕黑的海安采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4560243
求助须知:如何正确求助?哪些是违规求助? 3986532
关于积分的说明 12342828
捐赠科研通 3657137
什么是DOI,文献DOI怎么找? 2014731
邀请新用户注册赠送积分活动 1049596
科研通“疑难数据库(出版商)”最低求助积分说明 937803