Multimodal pedestrian detection using metaheuristics with deep convolutional neural network in crowded scenes

计算机科学 人工智能 卷积神经网络 超参数 深度学习 行人检测 机器学习 元启发式 行人 模式识别(心理学) 计算机视觉 运输工程 工程类
作者
Deepak Kumar Jain,Xudong Zhao,Germán González-Almagro,Chenquan Gan,Ketan Kotecha
出处
期刊:Information Fusion [Elsevier]
卷期号:95: 401-414 被引量:15
标识
DOI:10.1016/j.inffus.2023.02.014
摘要

Pedestrian detection (PD) is a vital computer vision (CV) problem that is highly employed in several real-time applications, namely autonomous driving methods, robotics, and security observing methods. Simulated by deep learning (DL) approaches to the recognition of generic objects, several investigation mechanisms have attained maximum recognition accuracy for acceptable scale and non-blocked pedestrians. However, the detection efficiency needed to be improved for complex cases like rare pose samples, crowd scenes, and cases with worse visibility due to daytime or weather. Therefore, this study develops a multimodal pedestrian detection system in crowded scenes using metaheuristics and a deep convolutional neural network (MMPD-MDCNN) technique. The MMPD-MDCNN technique's goal is to identify pedestrians in crowd scenes using different deep-learning models effectively. The proposed MMPD-MDCNN technique integrates three deep learning models: the residual network (ResNet-50), Inception v3, and the capsule network (CapsNet). In addition, the Harris Hawks Optimization (HHO) algorithm is applied for optimal hyperparameter tuning of the deep learning models. For pedestrian detection, the MMPD-MDCNN technique uses the long short-term memory (LSTM) model, and its hyperparameters can be adjusted by the shark smell optimization (SSO) algorithm. To demonstrate the superior performance of the MMPD-MDCNN approach, A comprehensive set of simulations on the INRIA and UCSD datasets was performed to illustrate the superior performance of the MMPD-MDCNN approach. The experimental results suggest that the MMPD-MDCNN model performs well on both datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汤圆圆儿完成签到,获得积分10
1秒前
1秒前
小徐同学完成签到,获得积分20
1秒前
孤独的匕发布了新的文献求助10
1秒前
大橙籽儿发布了新的文献求助10
2秒前
lemonlmm完成签到,获得积分0
2秒前
CodeCraft应助Pandaer采纳,获得10
2秒前
11完成签到,获得积分10
3秒前
lhy完成签到,获得积分10
3秒前
鲸鱼完成签到,获得积分10
3秒前
乐正邪欢发布了新的文献求助30
3秒前
张馨完成签到,获得积分10
4秒前
yfb完成签到,获得积分10
4秒前
4秒前
月影完成签到,获得积分10
4秒前
稳重的火龙果完成签到,获得积分10
4秒前
搞怪的雨南完成签到,获得积分10
5秒前
留胡子的小虾米完成签到,获得积分10
5秒前
宋桉完成签到,获得积分10
5秒前
5秒前
6秒前
阿俊完成签到,获得积分10
6秒前
血小板发布了新的文献求助10
6秒前
生动驳完成签到,获得积分10
6秒前
6秒前
6秒前
Moody Qi发布了新的文献求助10
7秒前
科研通AI2S应助千年雪松采纳,获得10
7秒前
龙之介完成签到,获得积分10
7秒前
FashionBoy应助奶油橙子采纳,获得10
8秒前
万能图书馆应助agleam采纳,获得20
8秒前
9秒前
9秒前
森林完成签到,获得积分10
10秒前
cxlhzq发布了新的文献求助10
10秒前
暴躁的嘉懿完成签到,获得积分10
10秒前
慕青应助qmhx采纳,获得10
10秒前
10秒前
小小杨发布了新的文献求助10
11秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068783
求助须知:如何正确求助?哪些是违规求助? 2722661
关于积分的说明 7478779
捐赠科研通 2369693
什么是DOI,文献DOI怎么找? 1256604
科研通“疑难数据库(出版商)”最低求助积分说明 609614
版权声明 596839