已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multimodal pedestrian detection using metaheuristics with deep convolutional neural network in crowded scenes

计算机科学 人工智能 卷积神经网络 超参数 深度学习 行人检测 机器学习 元启发式 行人 模式识别(心理学) 计算机视觉 运输工程 工程类
作者
Deepak Kumar Jain,Xudong Zhao,Germán González-Almagro,Chenquan Gan,Ketan Kotecha
出处
期刊:Information Fusion [Elsevier]
卷期号:95: 401-414 被引量:15
标识
DOI:10.1016/j.inffus.2023.02.014
摘要

Pedestrian detection (PD) is a vital computer vision (CV) problem that is highly employed in several real-time applications, namely autonomous driving methods, robotics, and security observing methods. Simulated by deep learning (DL) approaches to the recognition of generic objects, several investigation mechanisms have attained maximum recognition accuracy for acceptable scale and non-blocked pedestrians. However, the detection efficiency needed to be improved for complex cases like rare pose samples, crowd scenes, and cases with worse visibility due to daytime or weather. Therefore, this study develops a multimodal pedestrian detection system in crowded scenes using metaheuristics and a deep convolutional neural network (MMPD-MDCNN) technique. The MMPD-MDCNN technique's goal is to identify pedestrians in crowd scenes using different deep-learning models effectively. The proposed MMPD-MDCNN technique integrates three deep learning models: the residual network (ResNet-50), Inception v3, and the capsule network (CapsNet). In addition, the Harris Hawks Optimization (HHO) algorithm is applied for optimal hyperparameter tuning of the deep learning models. For pedestrian detection, the MMPD-MDCNN technique uses the long short-term memory (LSTM) model, and its hyperparameters can be adjusted by the shark smell optimization (SSO) algorithm. To demonstrate the superior performance of the MMPD-MDCNN approach, A comprehensive set of simulations on the INRIA and UCSD datasets was performed to illustrate the superior performance of the MMPD-MDCNN approach. The experimental results suggest that the MMPD-MDCNN model performs well on both datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chcmuer发布了新的文献求助30
刚刚
2秒前
Hello应助廷聿采纳,获得10
2秒前
3秒前
lmj完成签到,获得积分10
4秒前
Eric_Liuzy发布了新的文献求助10
4秒前
Lyon完成签到 ,获得积分10
5秒前
5秒前
古风完成签到 ,获得积分10
5秒前
6秒前
li完成签到 ,获得积分10
9秒前
9秒前
曦晨发布了新的文献求助10
10秒前
隐形曼青应助淡蓝时光采纳,获得10
12秒前
奶萌兔兔酱完成签到 ,获得积分10
12秒前
激昂的舞蹈完成签到,获得积分10
13秒前
古月发布了新的文献求助10
13秒前
13秒前
欢呼香完成签到 ,获得积分10
17秒前
cangye发布了新的文献求助10
17秒前
17秒前
小透明发布了新的文献求助10
19秒前
浮游应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
VDC应助科研通管家采纳,获得30
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
VDC应助科研通管家采纳,获得30
20秒前
大模型应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
SciGPT应助科研通管家采纳,获得30
20秒前
浮游应助科研通管家采纳,获得10
21秒前
汉堡包应助科研通管家采纳,获得10
21秒前
李竞帆发布了新的文献求助30
21秒前
21秒前
爆米花应助鱼仔采纳,获得10
21秒前
英姑应助曦晨采纳,获得10
23秒前
cm5257完成签到,获得积分10
24秒前
万能图书馆应助化学狗仔采纳,获得10
25秒前
26秒前
帅气的秘密完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462934
求助须知:如何正确求助?哪些是违规求助? 4567758
关于积分的说明 14311405
捐赠科研通 4493564
什么是DOI,文献DOI怎么找? 2461752
邀请新用户注册赠送积分活动 1450823
关于科研通互助平台的介绍 1425954