Robust Texture-Aware Local Adaptive Image Watermarking With Perceptual Guarantee

水印 数字水印 人工智能 图像纹理 稳健性(进化) 计算机视觉 计算机科学 嵌入 模式识别(心理学) 数学 图像(数学) 图像处理 生物化学 化学 基因
作者
Ying Huang,Hu Guan,Jie Liu,Shuwu Zhang,Baoning Niu,Guixuan Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (9): 4660-4674 被引量:10
标识
DOI:10.1109/tcsvt.2023.3245650
摘要

Watermarking involves embedding a watermark in an image and later extracting it to prove the image's copyright. In most cases, a complete image contains both smooth and textured regions. As a rule of thumb, the visual quality of an image with a watermark embedded in its textured regions is better than that of the same image with a watermark in smooth regions. This paper, by taking advantage of the fact, proposes a texture-aware local adaptive watermarking algorithm to maximize the watermark's robustness while maintaining its imperceptibility. To identify textured regions in an image, we introduce the texture value, an efficient and proper metric of the richness of image texture. It combines the texture correlation of the AC coefficients, the luminance masking of the DC coefficient, and the distribution of image texture. A watermark is embedded adaptively into multiple non-overlapping textured regions of an image under the specified SSIM condition. Its adaptiveness comes from a novel texture-aware adaptive parameter model derived by multivariate regression analysis. Correct extraction of watermarks from multiple textured regions can be done by the cooperation of embedding and extraction strategies, with the assistance of RS-based watermark coding model. They allow for greater robustness, faster extraction, and adjustable watermark capacity. The simulation experiments on 100 images demonstrate that our proposed algorithm outperforms state-of-the-art algorithms with respect to imperceptibility, robustness, and adaptability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QXS完成签到,获得积分10
1秒前
852应助无限的隶采纳,获得10
1秒前
flow完成签到,获得积分10
1秒前
1秒前
1秒前
黄嘟嘟完成签到,获得积分10
2秒前
bwbw完成签到,获得积分10
2秒前
大橙子发布了新的文献求助10
2秒前
难过鸿涛应助学术咸鱼采纳,获得10
2秒前
今何在完成签到,获得积分10
3秒前
BESTZJ完成签到,获得积分10
3秒前
爆米花应助gww采纳,获得10
3秒前
3秒前
3秒前
风趣的天奇完成签到,获得积分10
3秒前
3秒前
3秒前
运气先生完成签到 ,获得积分10
4秒前
flow发布了新的文献求助10
4秒前
小西贝完成签到 ,获得积分10
4秒前
一个小太阳鸭完成签到,获得积分10
4秒前
脑洞疼应助xiuxiu_27采纳,获得10
5秒前
eth完成签到,获得积分10
5秒前
华仔应助wzm采纳,获得10
5秒前
Anyixx完成签到 ,获得积分10
6秒前
6秒前
成哥完成签到,获得积分10
6秒前
灵巧的坤发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
OceanBlvdforme完成签到,获得积分10
7秒前
pigzhu发布了新的文献求助30
7秒前
梦梦完成签到,获得积分10
8秒前
8秒前
9秒前
魏煜佳发布了新的文献求助10
9秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759