材料科学
摩擦学
拉曼光谱
润滑油
纳米复合材料
复合材料
扫描电子显微镜
透射电子显微镜
干润滑剂
纳米核糖学
纳米技术
光学
物理
作者
Ali Zayaan Macknojia,Aditya Ayyagari,Darío Zambrano,Andreas Rosenkranz,Elena V. Shevchenko,Diana Berman
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-01-25
卷期号:17 (3): 2421-2430
被引量:67
标识
DOI:10.1021/acsnano.2c09640
摘要
Toward the goal of achieving superlubricity, or near-zero friction, in industrially relevant material systems, solution-processed multilayer Ti3C2Tx-MoS2 blends are spray-coated onto rough 52100-grade steel surfaces as a solid lubricant. The tribological performance was assessed in a ball-on-disk configuration in a unidirectional sliding mode. The test results indicate that Ti3C2Tx-MoS2 nanocomposites led to superlubricious states, which has hitherto been unreported for both individual pristine materials, MoS2 and Ti3C2Tx, under macroscale sliding conditions, indicating a synergistic mechanism enabling the superlative performance. The processing, structure, and property correlation were studied to understand the underlying phenomena. Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy revealed the formation of an in situ robust tribolayer that was responsible for the performance at high contact pressures (>1.1 GPa) and sliding speeds (0.1 m/s). This report presents the lowest friction obtained by either MoS2 or MXene or any combination of the two so far.
科研通智能强力驱动
Strongly Powered by AbleSci AI