A Learnable Image-Based Load Signature Construction Approach in NILM for Appliances Identification

计算机科学 图形 格拉米安矩阵 人工智能 变压器 签名(拓扑) 特征提取 模式识别(心理学) 残余物 机器学习 数据挖掘 电压 工程类 算法 数学 理论计算机科学 特征向量 物理 几何学 量子力学 电气工程
作者
Yusen Zhang,Hao Wu,Qing Ma,Qingrong Yang,Yiwen Wang
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (5): 3841-3849 被引量:6
标识
DOI:10.1109/tsg.2023.3239598
摘要

One of the tasks of Non-Intrusive Load Monitoring (NILM) is load identification, which aims to extract and classify altered electrical signals after switching events are detected. In this subtask, representative and distinguishable load signatures are essential. At present, the literature approach to characterize electrical appliances is mainly based on manual feature engineering. However, the performance of signatures obtained by this way is limited. In this paper, we propose a novel load signature construction method utilizing deep learning techniques. Specifically, three learnable load signatures are presented such as Learnable Recurrent Graph (LRG), Learnable Gramian Matrix (LGM) and Generative Graph (GG). Furthermore, we test different frameworks for learning these signatures and conclude that Temporal Convolutional Networks (TCN) based on residual learning are more suitable for this work than the other schemes mentioned. The results of experiment on the PLAID datasets with submetered and aggregated, WHITED dataset and LILAC dataset confirm that our method outperforms the voltage-current trajectory, Recursive Graph and Gramian Angular Field methods in multiple evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雨夜星空完成签到,获得积分10
1秒前
饱满的半青完成签到 ,获得积分10
2秒前
2秒前
务实盼海发布了新的文献求助10
2秒前
Jouleken完成签到,获得积分10
2秒前
3秒前
zq00完成签到,获得积分10
3秒前
3秒前
斯文败类应助独木舟采纳,获得10
3秒前
易哒哒完成签到,获得积分10
3秒前
CCL应助QXS采纳,获得50
4秒前
大方安白完成签到,获得积分10
4秒前
Xxaaa完成签到,获得积分20
4秒前
张小敏完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
科研通AI2S应助Zhong采纳,获得10
6秒前
yidashi完成签到,获得积分10
6秒前
Kelvin.Tsi完成签到 ,获得积分10
6秒前
Island发布了新的文献求助10
7秒前
hu970发布了新的文献求助10
7秒前
九九发布了新的文献求助10
7秒前
123456完成签到,获得积分10
7秒前
BareBear应助龙妍琳采纳,获得10
7秒前
赘婿应助wary采纳,获得10
8秒前
小蘑菇应助wary采纳,获得10
8秒前
上官若男应助wary采纳,获得10
8秒前
李爱国应助木子采纳,获得10
8秒前
烟花应助马佳凯采纳,获得10
8秒前
8秒前
LYL完成签到,获得积分10
9秒前
9秒前
得意凡人完成签到,获得积分10
9秒前
9秒前
害怕的擎宇完成签到,获得积分10
10秒前
柳絮完成签到,获得积分20
10秒前
11秒前
赫连烙发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762