Real-time plume tracking using transfer learning approach

羽流 跟踪(教育) 高保真 体积热力学 易燃液体 计算机科学 计算 忠诚 一般化 学习迁移 深度学习 人工智能 模拟 机器学习 算法 工程类 气象学 数学 地理 废物管理 电气工程 数学分析 物理 电信 量子力学 教育学 心理学
作者
Jihao Shi,Weikang Xie,Junjie Li,Xinqi Zhang,Xinyan Huang,Asif Usmani,Faisal Khan,Guoming Chen
出处
期刊:Computers & Chemical Engineering [Elsevier]
卷期号:172: 108172-108172 被引量:25
标识
DOI:10.1016/j.compchemeng.2023.108172
摘要

Deep learning has been used to track the real-time flammable plume of natural gas. However, a large volume of high-fidelity data is required to train the deep learning model for sufficient accuracy in congested industrial environments, which can be computationally prohibitive. This study proposes a transfer learning-based variable-fidelity approach for real-time plume tracking. A Gaussian dispersion model was applied to efficiently generate a large volume of low-fidelity data, which is then used to pre-train the deep learning model. A limited number of high-fidelity simulations were conducted by solving the Navier-Stokes equation to fine-tune the pre-trained model. A case study demonstrated our proposed approach could reduce high-fidelity computations by 72% while ensuring prediction accuracy with R2=0.96 for released plume area estimation in congested chemical facilities. Optimal number of frozen layers, learning rate and the number of high-fidelity simulations required were determined to ensure adequate efficiency for this approach. This study provides an efficient alternative to improve the generalization of deep learning for real-time plume area estimation for large-scale congested chemical plants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
草莓完成签到,获得积分10
1秒前
1秒前
Dingjiani发布了新的文献求助10
1秒前
2秒前
大个应助小曾最棒啦采纳,获得10
2秒前
Ava应助小曾最棒啦采纳,获得10
2秒前
3秒前
Ava应助小曾最棒啦采纳,获得10
3秒前
酷波er应助小曾最棒啦采纳,获得10
3秒前
田様应助小曾最棒啦采纳,获得10
3秒前
打打应助小曾最棒啦采纳,获得10
3秒前
英姑应助小曾最棒啦采纳,获得10
3秒前
3秒前
汉堡包应助小曾最棒啦采纳,获得10
3秒前
汉堡包应助小曾最棒啦采纳,获得10
3秒前
gw完成签到 ,获得积分10
3秒前
lfl发布了新的文献求助10
4秒前
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
YsGao应助科研通管家采纳,获得10
4秒前
4秒前
Thien应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
虚幻南莲发布了新的文献求助30
4秒前
Thien应助科研通管家采纳,获得10
5秒前
Mic应助xll采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
大龙哥886应助科研通管家采纳,获得10
5秒前
YsGao应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
Lee应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
5秒前
情怀应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588437
求助须知:如何正确求助?哪些是违规求助? 4671534
关于积分的说明 14787623
捐赠科研通 4625353
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314