Reliability of Postoperative Free Flap Monitoring with a Novel Prediction Model Based on Supervised Machine Learning

医学 自由襟翼 显微外科 动脉供血不足 外科 可靠性(半导体) 专业 机器学习 计算机科学 功率(物理) 物理 病理 量子力学
作者
Ren‐Wen Huang,Tzong-Yueh Tsai,Yun‐Huan Hsieh,Chung‐Chen Hsu,Shih‐Heng Chen,Che‐Hsiung Lee,Yu‐Te Lin,Charles Yuen Yung Loh,Cheng‐Hung Lin
出处
期刊:Plastic and Reconstructive Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:152 (5): 943e-952e 被引量:12
标识
DOI:10.1097/prs.0000000000010307
摘要

Background: Postoperative free flap monitoring is a critical part of reconstructive microsurgery. Postoperative clinical assessments rely heavily on specialty-trained staff. Therefore, in regions with limited specialist availability, the feasibility of performing microsurgery is restricted. This study aimed to apply artificial intelligence in postoperative free flap monitoring and validate the ability of machine learning in predicting and differentiating types of postoperative free flap circulation. Methods: Postoperative data from 176 patients who received free flap surgery were prospectively collected, including free flap photographs and clinical evaluation measures. Flap circulation outcome variables included normal, arterial insufficiency, and venous insufficiency. The Synthetic Minority Oversampling Technique plus Tomek Links (SMOTE-Tomek) was applied for data balance. Data were divided into 80%:20% for model training and validation. Shapley Additive Explanations were used for prediction interpretations of the model. Results: Of 805 total included flaps, 555 (69%) were normal, 97 (12%) had arterial insufficiency, and 153 (19%) had venous insufficiency. The most effective prediction model was developed based on random forest, with an accuracy of 98.4%. Temperature and color differences between the flap and the surrounding skin were the most significant contributing factors to predict a vascular compromised flap. Conclusions: This study demonstrated the reliability of a machine-learning model in differentiating various types of postoperative flap circulation. This novel technique may reduce the burden of free flap monitoring and encourage the broader use of reconstructive microsurgery in regions with a limited number of staff specialists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
siccy完成签到 ,获得积分10
1秒前
Worenxian完成签到,获得积分10
1秒前
飞上草完成签到,获得积分10
2秒前
可爱的函函应助Renhong采纳,获得10
2秒前
2秒前
ayu发布了新的文献求助10
3秒前
科研小趴菜完成签到,获得积分10
3秒前
成就的山水完成签到,获得积分10
3秒前
英俊的铭应助guugen采纳,获得10
3秒前
科目三应助visible采纳,获得10
4秒前
酷炫依凝完成签到,获得积分10
4秒前
Eason发布了新的文献求助10
4秒前
bloomjjj发布了新的文献求助10
4秒前
orixero应助羊羊羊采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
互助遵法尚德应助潦草采纳,获得10
7秒前
善学以致用应助奋斗的萝采纳,获得10
7秒前
不爱干饭发布了新的文献求助10
8秒前
Slimshaddy完成签到,获得积分10
9秒前
雨醉东风发布了新的文献求助10
9秒前
bloomjjj完成签到,获得积分20
10秒前
Marybaby完成签到,获得积分10
10秒前
77完成签到,获得积分20
10秒前
Wongbee发布了新的文献求助10
10秒前
Hu完成签到 ,获得积分10
11秒前
文献求助人完成签到,获得积分10
11秒前
Eason完成签到,获得积分20
12秒前
静俏发布了新的文献求助10
12秒前
Cc发布了新的文献求助10
12秒前
13秒前
丘比特应助周周采纳,获得10
13秒前
13秒前
畅快的笑寒关注了科研通微信公众号
13秒前
lwh104完成签到,获得积分10
14秒前
Shirley完成签到,获得积分10
15秒前
mathmotive完成签到,获得积分10
15秒前
16秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147820
求助须知:如何正确求助?哪些是违规求助? 2798873
关于积分的说明 7832037
捐赠科研通 2455841
什么是DOI,文献DOI怎么找? 1306979
科研通“疑难数据库(出版商)”最低求助积分说明 627957
版权声明 601587