亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Toward Predicting 30-Day Readmission Among Oncology Patients: Identifying Timely and Actionable Risk Factors

随机森林 下垂 医学 接收机工作特性 心理干预 预测建模 内科学 队列 史诗 急诊医学 婚姻状况 机器学习 人工智能 计算机科学 艺术 人口 文学类 环境卫生 考古 精神科 历史
作者
Sy Hwang,Ryan J. Urbanowicz,Selah Lynch,Tawnya M. Vernon,Kellie Bresz,Carolina Díaz Giraldo,Erin Kennedy,Max Leabhart,Troy Bleacher,Michael R. Ripchinski,Danielle L. Mowery,Randall A. Oyer
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (7) 被引量:6
标识
DOI:10.1200/cci.22.00097
摘要

PURPOSE Predicting 30-day readmission risk is paramount to improving the quality of patient care. In this study, we compare sets of patient-, provider-, and community-level variables that are available at two different points of a patient's inpatient encounter (first 48 hours and the full encounter) to train readmission prediction models and identify possible targets for appropriate interventions that can potentially reduce avoidable readmissions. METHODS Using electronic health record data from a retrospective cohort of 2,460 oncology patients and a comprehensive machine learning analysis pipeline, we trained and tested models predicting 30-day readmission on the basis of data available within the first 48 hours of admission and from the entire hospital encounter. RESULTS Leveraging all features, the light gradient boosting model produced higher, but comparable performance (area under receiver operating characteristic curve [AUROC]: 0.711) with the Epic model (AUROC: 0.697). Given features in the first 48 hours, the random forest model produces higher AUROC (0.684) than the Epic model (AUROC: 0.676). Both models flagged patients with a similar distribution of race and sex; however, our light gradient boosting and random forest models were more inclusive, flagging more patients among younger age groups. The Epic models were more sensitive to identifying patients with an average lower zip income. Our 48-hour models were powered by novel features at various levels: patient (weight change over 365 days, depression symptoms, laboratory values, and cancer type), hospital (winter discharge and hospital admission type), and community (zip income and marital status of partner). CONCLUSION We developed and validated models comparable with the existing Epic 30-day readmission models with several novel actionable insights that could create service interventions deployed by the case management or discharge planning teams that may decrease readmission rates over time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
SCI发布了新的文献求助10
17秒前
科研通AI6应助MOMO采纳,获得10
21秒前
whj完成签到 ,获得积分10
21秒前
SCI完成签到,获得积分10
22秒前
24秒前
能干的人完成签到,获得积分10
48秒前
科研通AI6应助MOMO采纳,获得10
51秒前
科目三应助科研通管家采纳,获得10
56秒前
天天快乐应助科研通管家采纳,获得10
56秒前
烟花应助科研通管家采纳,获得10
56秒前
酷波er应助科研通管家采纳,获得10
56秒前
56秒前
1分钟前
fge完成签到,获得积分10
1分钟前
务实擎汉发布了新的文献求助10
1分钟前
1分钟前
MOMO发布了新的文献求助10
1分钟前
MchemG应助小天采纳,获得10
1分钟前
呜呜吴完成签到,获得积分10
1分钟前
靓丽的善斓完成签到 ,获得积分10
2分钟前
MOMO发布了新的文献求助10
2分钟前
MOMO发布了新的文献求助10
2分钟前
思源应助务实擎汉采纳,获得20
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
三点前我必睡完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
MOMO发布了新的文献求助10
3分钟前
安青兰完成签到 ,获得积分10
3分钟前
一粟完成签到 ,获得积分10
3分钟前
MchemG完成签到,获得积分0
3分钟前
MOMO发布了新的文献求助10
3分钟前
djbj2022发布了新的文献求助10
3分钟前
3分钟前
wanci应助小天采纳,获得10
4分钟前
4分钟前
小二郎应助圆圆的大脑采纳,获得10
4分钟前
4分钟前
小二郎应助Nowind采纳,获得30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459093
求助须知:如何正确求助?哪些是违规求助? 4564894
关于积分的说明 14297231
捐赠科研通 4489961
什么是DOI,文献DOI怎么找? 2459447
邀请新用户注册赠送积分活动 1449114
关于科研通互助平台的介绍 1424585