Toward Predicting 30-Day Readmission Among Oncology Patients: Identifying Timely and Actionable Risk Factors

随机森林 下垂 医学 接收机工作特性 心理干预 预测建模 内科学 队列 史诗 急诊医学 婚姻状况 机器学习 人工智能 计算机科学 艺术 人口 文学类 环境卫生 考古 精神科 历史
作者
Sy Hwang,Ryan J. Urbanowicz,Selah Lynch,Tawnya M. Vernon,Kellie Bresz,Carolina Díaz Giraldo,Erin Kennedy,Max Leabhart,Troy Bleacher,Michael R. Ripchinski,Danielle L. Mowery,Randall A. Oyer
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (7) 被引量:6
标识
DOI:10.1200/cci.22.00097
摘要

PURPOSE Predicting 30-day readmission risk is paramount to improving the quality of patient care. In this study, we compare sets of patient-, provider-, and community-level variables that are available at two different points of a patient's inpatient encounter (first 48 hours and the full encounter) to train readmission prediction models and identify possible targets for appropriate interventions that can potentially reduce avoidable readmissions. METHODS Using electronic health record data from a retrospective cohort of 2,460 oncology patients and a comprehensive machine learning analysis pipeline, we trained and tested models predicting 30-day readmission on the basis of data available within the first 48 hours of admission and from the entire hospital encounter. RESULTS Leveraging all features, the light gradient boosting model produced higher, but comparable performance (area under receiver operating characteristic curve [AUROC]: 0.711) with the Epic model (AUROC: 0.697). Given features in the first 48 hours, the random forest model produces higher AUROC (0.684) than the Epic model (AUROC: 0.676). Both models flagged patients with a similar distribution of race and sex; however, our light gradient boosting and random forest models were more inclusive, flagging more patients among younger age groups. The Epic models were more sensitive to identifying patients with an average lower zip income. Our 48-hour models were powered by novel features at various levels: patient (weight change over 365 days, depression symptoms, laboratory values, and cancer type), hospital (winter discharge and hospital admission type), and community (zip income and marital status of partner). CONCLUSION We developed and validated models comparable with the existing Epic 30-day readmission models with several novel actionable insights that could create service interventions deployed by the case management or discharge planning teams that may decrease readmission rates over time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小北发布了新的文献求助10
1秒前
2秒前
4秒前
所所应助研友_n2yJbL采纳,获得10
5秒前
十九发布了新的文献求助10
5秒前
所所应助端庄的蜡烛采纳,获得10
6秒前
一个发布了新的文献求助10
7秒前
孤灯剑客完成签到,获得积分10
7秒前
夏侯觅风发布了新的文献求助10
8秒前
谦让的牛排完成签到 ,获得积分10
12秒前
13秒前
14秒前
细心帽子完成签到 ,获得积分10
15秒前
15秒前
15秒前
科研通AI6应助一个采纳,获得10
17秒前
科研通AI2S应助月儿采纳,获得10
18秒前
充电宝应助月儿采纳,获得10
18秒前
乐乐应助月儿采纳,获得10
18秒前
BowieHuang应助月儿采纳,获得10
18秒前
隐形曼青应助月儿采纳,获得30
18秒前
18秒前
李爱国应助月儿采纳,获得30
18秒前
小二郎应助月儿采纳,获得30
18秒前
Hello应助月儿采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
20秒前
---发布了新的文献求助10
20秒前
GH完成签到,获得积分10
21秒前
彭于晏应助小李采纳,获得10
21秒前
22秒前
传奇3应助小巧酸奶采纳,获得10
23秒前
24秒前
那都通完成签到,获得积分10
24秒前
hcxhch发布了新的文献求助10
25秒前
GH发布了新的文献求助10
25秒前
金鑫水淼完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571822
求助须知:如何正确求助?哪些是违规求助? 4656993
关于积分的说明 14718727
捐赠科研通 4597831
什么是DOI,文献DOI怎么找? 2523395
邀请新用户注册赠送积分活动 1494239
关于科研通互助平台的介绍 1464312