Toward Predicting 30-Day Readmission Among Oncology Patients: Identifying Timely and Actionable Risk Factors

随机森林 下垂 医学 接收机工作特性 心理干预 预测建模 内科学 队列 史诗 急诊医学 婚姻状况 机器学习 人工智能 计算机科学 艺术 人口 文学类 环境卫生 考古 精神科 历史
作者
Sy Hwang,Ryan J. Urbanowicz,Selah Lynch,Tawnya M. Vernon,Kellie Bresz,Carolina Díaz Giraldo,Erin Kennedy,Max Leabhart,Troy Bleacher,Michael R. Ripchinski,Danielle L. Mowery,Randall A. Oyer
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (7) 被引量:6
标识
DOI:10.1200/cci.22.00097
摘要

PURPOSE Predicting 30-day readmission risk is paramount to improving the quality of patient care. In this study, we compare sets of patient-, provider-, and community-level variables that are available at two different points of a patient's inpatient encounter (first 48 hours and the full encounter) to train readmission prediction models and identify possible targets for appropriate interventions that can potentially reduce avoidable readmissions. METHODS Using electronic health record data from a retrospective cohort of 2,460 oncology patients and a comprehensive machine learning analysis pipeline, we trained and tested models predicting 30-day readmission on the basis of data available within the first 48 hours of admission and from the entire hospital encounter. RESULTS Leveraging all features, the light gradient boosting model produced higher, but comparable performance (area under receiver operating characteristic curve [AUROC]: 0.711) with the Epic model (AUROC: 0.697). Given features in the first 48 hours, the random forest model produces higher AUROC (0.684) than the Epic model (AUROC: 0.676). Both models flagged patients with a similar distribution of race and sex; however, our light gradient boosting and random forest models were more inclusive, flagging more patients among younger age groups. The Epic models were more sensitive to identifying patients with an average lower zip income. Our 48-hour models were powered by novel features at various levels: patient (weight change over 365 days, depression symptoms, laboratory values, and cancer type), hospital (winter discharge and hospital admission type), and community (zip income and marital status of partner). CONCLUSION We developed and validated models comparable with the existing Epic 30-day readmission models with several novel actionable insights that could create service interventions deployed by the case management or discharge planning teams that may decrease readmission rates over time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kf033发布了新的文献求助10
刚刚
小丫应助吃葡萄皮采纳,获得30
1秒前
优美紫槐应助Jankin采纳,获得10
1秒前
RenYanqiang完成签到,获得积分10
2秒前
3秒前
hfgeyt完成签到,获得积分10
3秒前
犹豫的芝麻完成签到 ,获得积分10
4秒前
优雅灵波完成签到,获得积分20
4秒前
jin完成签到,获得积分20
4秒前
5秒前
语恒发布了新的文献求助10
5秒前
7秒前
7秒前
Cheny完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
芳菲依旧应助LinJunhong采纳,获得10
8秒前
善学以致用应助unaqvq采纳,获得10
8秒前
jin发布了新的文献求助10
9秒前
9秒前
9秒前
www完成签到,获得积分20
11秒前
缓慢的饼干完成签到,获得积分10
11秒前
鲜艳的忆枫完成签到,获得积分20
12秒前
Popeye完成签到,获得积分10
12秒前
英俊的铭应助FMING采纳,获得10
13秒前
跳跃美女发布了新的文献求助10
13秒前
13秒前
梦云点灯完成签到,获得积分10
14秒前
caijiaqi发布了新的文献求助20
14秒前
沉默的驳发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
16秒前
1111完成签到 ,获得积分10
17秒前
CodeCraft应助舒心盼曼采纳,获得30
17秒前
是晓宇啊完成签到,获得积分10
17秒前
17秒前
17秒前
静夜谧思完成签到,获得积分10
18秒前
好好学习发布了新的文献求助10
18秒前
赘婿应助hfm采纳,获得30
19秒前
语恒完成签到,获得积分10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743404
求助须知:如何正确求助?哪些是违规求助? 5413822
关于积分的说明 15347458
捐赠科研通 4884191
什么是DOI,文献DOI怎么找? 2625636
邀请新用户注册赠送积分活动 1574492
关于科研通互助平台的介绍 1531400