Toward Predicting 30-Day Readmission Among Oncology Patients: Identifying Timely and Actionable Risk Factors

随机森林 下垂 医学 接收机工作特性 心理干预 预测建模 内科学 队列 史诗 急诊医学 婚姻状况 机器学习 人工智能 计算机科学 艺术 人口 文学类 环境卫生 考古 精神科 历史
作者
Sy Hwang,Ryan J. Urbanowicz,Selah Lynch,Tawnya M. Vernon,Kellie Bresz,Carolina Díaz Giraldo,Erin Kennedy,Max Leabhart,Troy Bleacher,Michael R. Ripchinski,Danielle L. Mowery,Randall A. Oyer
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (7) 被引量:6
标识
DOI:10.1200/cci.22.00097
摘要

PURPOSE Predicting 30-day readmission risk is paramount to improving the quality of patient care. In this study, we compare sets of patient-, provider-, and community-level variables that are available at two different points of a patient's inpatient encounter (first 48 hours and the full encounter) to train readmission prediction models and identify possible targets for appropriate interventions that can potentially reduce avoidable readmissions. METHODS Using electronic health record data from a retrospective cohort of 2,460 oncology patients and a comprehensive machine learning analysis pipeline, we trained and tested models predicting 30-day readmission on the basis of data available within the first 48 hours of admission and from the entire hospital encounter. RESULTS Leveraging all features, the light gradient boosting model produced higher, but comparable performance (area under receiver operating characteristic curve [AUROC]: 0.711) with the Epic model (AUROC: 0.697). Given features in the first 48 hours, the random forest model produces higher AUROC (0.684) than the Epic model (AUROC: 0.676). Both models flagged patients with a similar distribution of race and sex; however, our light gradient boosting and random forest models were more inclusive, flagging more patients among younger age groups. The Epic models were more sensitive to identifying patients with an average lower zip income. Our 48-hour models were powered by novel features at various levels: patient (weight change over 365 days, depression symptoms, laboratory values, and cancer type), hospital (winter discharge and hospital admission type), and community (zip income and marital status of partner). CONCLUSION We developed and validated models comparable with the existing Epic 30-day readmission models with several novel actionable insights that could create service interventions deployed by the case management or discharge planning teams that may decrease readmission rates over time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助Han采纳,获得30
1秒前
小马甲应助121采纳,获得10
2秒前
2秒前
卡其发布了新的文献求助10
4秒前
拼搏遥完成签到,获得积分20
5秒前
xioaru完成签到,获得积分20
6秒前
兜有米完成签到,获得积分10
8秒前
董咚咚完成签到,获得积分10
9秒前
biocx发布了新的文献求助10
9秒前
上官若男应助宁宁采纳,获得10
10秒前
情怀应助务实的凝天采纳,获得10
14秒前
zz关注了科研通微信公众号
16秒前
酷波er应助xiaohang采纳,获得10
17秒前
19秒前
木木发布了新的文献求助20
19秒前
19秒前
NexusExplorer应助王权富贵采纳,获得10
19秒前
希望天下0贩的0应助suka采纳,获得10
21秒前
21秒前
21秒前
科研通AI2S应助Ha哈采纳,获得10
24秒前
Akim应助小小虾采纳,获得10
24秒前
oceanao应助bistable采纳,获得10
24秒前
阿里发布了新的文献求助10
25秒前
25秒前
puzhongjiMiQ发布了新的文献求助10
26秒前
27秒前
27秒前
28秒前
walker发布了新的文献求助10
29秒前
李昕123发布了新的文献求助10
31秒前
Cris发布了新的文献求助10
31秒前
32秒前
泡泡球发布了新的文献求助10
32秒前
王石雨晨完成签到 ,获得积分10
34秒前
sss完成签到,获得积分10
34秒前
Han发布了新的文献求助10
35秒前
35秒前
35秒前
37秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158017
求助须知:如何正确求助?哪些是违规求助? 2809393
关于积分的说明 7881798
捐赠科研通 2467878
什么是DOI,文献DOI怎么找? 1313757
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943