Toward Predicting 30-Day Readmission Among Oncology Patients: Identifying Timely and Actionable Risk Factors

随机森林 下垂 医学 接收机工作特性 心理干预 预测建模 内科学 队列 史诗 急诊医学 婚姻状况 机器学习 人工智能 计算机科学 艺术 考古 文学类 精神科 环境卫生 历史 人口
作者
Sy Hwang,Ryan J. Urbanowicz,Selah Lynch,Tawnya M. Vernon,Kellie Bresz,Carolina Díaz Giraldo,Erin Kennedy,Max Leabhart,Troy Bleacher,Michael R. Ripchinski,Danielle L. Mowery,Randall A. Oyer
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (7) 被引量:6
标识
DOI:10.1200/cci.22.00097
摘要

PURPOSE Predicting 30-day readmission risk is paramount to improving the quality of patient care. In this study, we compare sets of patient-, provider-, and community-level variables that are available at two different points of a patient's inpatient encounter (first 48 hours and the full encounter) to train readmission prediction models and identify possible targets for appropriate interventions that can potentially reduce avoidable readmissions. METHODS Using electronic health record data from a retrospective cohort of 2,460 oncology patients and a comprehensive machine learning analysis pipeline, we trained and tested models predicting 30-day readmission on the basis of data available within the first 48 hours of admission and from the entire hospital encounter. RESULTS Leveraging all features, the light gradient boosting model produced higher, but comparable performance (area under receiver operating characteristic curve [AUROC]: 0.711) with the Epic model (AUROC: 0.697). Given features in the first 48 hours, the random forest model produces higher AUROC (0.684) than the Epic model (AUROC: 0.676). Both models flagged patients with a similar distribution of race and sex; however, our light gradient boosting and random forest models were more inclusive, flagging more patients among younger age groups. The Epic models were more sensitive to identifying patients with an average lower zip income. Our 48-hour models were powered by novel features at various levels: patient (weight change over 365 days, depression symptoms, laboratory values, and cancer type), hospital (winter discharge and hospital admission type), and community (zip income and marital status of partner). CONCLUSION We developed and validated models comparable with the existing Epic 30-day readmission models with several novel actionable insights that could create service interventions deployed by the case management or discharge planning teams that may decrease readmission rates over time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率的文龙完成签到,获得积分10
刚刚
1秒前
大蒜味酸奶钊完成签到 ,获得积分10
1秒前
1秒前
安详可燕完成签到,获得积分20
1秒前
James完成签到,获得积分10
2秒前
星空点点完成签到 ,获得积分10
2秒前
顾矜应助Blues汪采纳,获得10
2秒前
崔win发布了新的文献求助10
2秒前
路漫漫123完成签到,获得积分10
3秒前
啾咪发布了新的文献求助10
3秒前
4秒前
GingerF应助超级的晓啸采纳,获得60
5秒前
林炎完成签到,获得积分10
5秒前
安详可燕发布了新的文献求助10
5秒前
zzt关闭了zzt文献求助
5秒前
十亿少女的梦完成签到,获得积分10
5秒前
cyz完成签到,获得积分10
6秒前
6秒前
qiyixuan发布了新的文献求助10
7秒前
小宝完成签到,获得积分10
7秒前
8秒前
小蘑菇应助chen采纳,获得10
8秒前
Adler发布了新的文献求助10
8秒前
seata发布了新的文献求助10
8秒前
ZhiyunXu2012完成签到 ,获得积分10
9秒前
Zyer完成签到,获得积分10
9秒前
10秒前
11秒前
shisui发布了新的文献求助20
12秒前
忧虑的电话完成签到,获得积分10
12秒前
月亮完成签到,获得积分20
13秒前
张今天也要做科研呀完成签到,获得积分10
14秒前
GH完成签到,获得积分10
14秒前
14秒前
崔win完成签到,获得积分10
15秒前
lin发布了新的文献求助10
15秒前
艾迪富富完成签到,获得积分10
15秒前
羔羊发布了新的文献求助10
16秒前
科研顺利完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951532
求助须知:如何正确求助?哪些是违规求助? 3496928
关于积分的说明 11085323
捐赠科研通 3227364
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868444
科研通“疑难数据库(出版商)”最低求助积分说明 801139