随机森林
下垂
医学
接收机工作特性
心理干预
预测建模
内科学
队列
史诗
急诊医学
婚姻状况
机器学习
人工智能
计算机科学
艺术
人口
文学类
环境卫生
考古
精神科
历史
作者
Sy Hwang,Ryan J. Urbanowicz,Selah Lynch,Tawnya M. Vernon,Kellie Bresz,Carolina Díaz Giraldo,Erin Kennedy,Max Leabhart,Troy Bleacher,Michael R. Ripchinski,Danielle L. Mowery,Randall A. Oyer
出处
期刊:JCO clinical cancer informatics
[American Society of Clinical Oncology]
日期:2023-02-01
卷期号: (7)
被引量:6
摘要
PURPOSE Predicting 30-day readmission risk is paramount to improving the quality of patient care. In this study, we compare sets of patient-, provider-, and community-level variables that are available at two different points of a patient's inpatient encounter (first 48 hours and the full encounter) to train readmission prediction models and identify possible targets for appropriate interventions that can potentially reduce avoidable readmissions. METHODS Using electronic health record data from a retrospective cohort of 2,460 oncology patients and a comprehensive machine learning analysis pipeline, we trained and tested models predicting 30-day readmission on the basis of data available within the first 48 hours of admission and from the entire hospital encounter. RESULTS Leveraging all features, the light gradient boosting model produced higher, but comparable performance (area under receiver operating characteristic curve [AUROC]: 0.711) with the Epic model (AUROC: 0.697). Given features in the first 48 hours, the random forest model produces higher AUROC (0.684) than the Epic model (AUROC: 0.676). Both models flagged patients with a similar distribution of race and sex; however, our light gradient boosting and random forest models were more inclusive, flagging more patients among younger age groups. The Epic models were more sensitive to identifying patients with an average lower zip income. Our 48-hour models were powered by novel features at various levels: patient (weight change over 365 days, depression symptoms, laboratory values, and cancer type), hospital (winter discharge and hospital admission type), and community (zip income and marital status of partner). CONCLUSION We developed and validated models comparable with the existing Epic 30-day readmission models with several novel actionable insights that could create service interventions deployed by the case management or discharge planning teams that may decrease readmission rates over time.
科研通智能强力驱动
Strongly Powered by AbleSci AI