Toward Predicting 30-Day Readmission Among Oncology Patients: Identifying Timely and Actionable Risk Factors

随机森林 下垂 医学 接收机工作特性 心理干预 预测建模 内科学 队列 史诗 急诊医学 婚姻状况 机器学习 人工智能 计算机科学 艺术 人口 文学类 环境卫生 考古 精神科 历史
作者
Sy Hwang,Ryan J. Urbanowicz,Selah Lynch,Tawnya M. Vernon,Kellie Bresz,Carolina Díaz Giraldo,Erin Kennedy,Max Leabhart,Troy Bleacher,Michael R. Ripchinski,Danielle L. Mowery,Randall A. Oyer
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (7) 被引量:6
标识
DOI:10.1200/cci.22.00097
摘要

PURPOSE Predicting 30-day readmission risk is paramount to improving the quality of patient care. In this study, we compare sets of patient-, provider-, and community-level variables that are available at two different points of a patient's inpatient encounter (first 48 hours and the full encounter) to train readmission prediction models and identify possible targets for appropriate interventions that can potentially reduce avoidable readmissions. METHODS Using electronic health record data from a retrospective cohort of 2,460 oncology patients and a comprehensive machine learning analysis pipeline, we trained and tested models predicting 30-day readmission on the basis of data available within the first 48 hours of admission and from the entire hospital encounter. RESULTS Leveraging all features, the light gradient boosting model produced higher, but comparable performance (area under receiver operating characteristic curve [AUROC]: 0.711) with the Epic model (AUROC: 0.697). Given features in the first 48 hours, the random forest model produces higher AUROC (0.684) than the Epic model (AUROC: 0.676). Both models flagged patients with a similar distribution of race and sex; however, our light gradient boosting and random forest models were more inclusive, flagging more patients among younger age groups. The Epic models were more sensitive to identifying patients with an average lower zip income. Our 48-hour models were powered by novel features at various levels: patient (weight change over 365 days, depression symptoms, laboratory values, and cancer type), hospital (winter discharge and hospital admission type), and community (zip income and marital status of partner). CONCLUSION We developed and validated models comparable with the existing Epic 30-day readmission models with several novel actionable insights that could create service interventions deployed by the case management or discharge planning teams that may decrease readmission rates over time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dididi完成签到 ,获得积分10
3秒前
英勇初南发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
panda完成签到,获得积分0
4秒前
研究生完成签到 ,获得积分10
6秒前
MM发布了新的文献求助10
6秒前
高高高完成签到 ,获得积分10
7秒前
innocent完成签到,获得积分10
8秒前
guojingjing发布了新的文献求助30
9秒前
10秒前
11秒前
满意的伊完成签到,获得积分10
11秒前
lzr完成签到 ,获得积分10
14秒前
风汐5423完成签到,获得积分10
14秒前
决明lyt完成签到,获得积分10
16秒前
发展是第一要务完成签到 ,获得积分10
16秒前
我是笨蛋发布了新的文献求助10
17秒前
liang完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助100
20秒前
幽默绮玉完成签到 ,获得积分10
20秒前
klicking完成签到,获得积分10
21秒前
漏脑之鱼完成签到 ,获得积分10
22秒前
23秒前
jzs完成签到 ,获得积分10
26秒前
笑点低的凉面完成签到,获得积分10
27秒前
喜悦跳跳糖完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
Assassion发布了新的文献求助30
29秒前
Judy完成签到 ,获得积分0
32秒前
muxc完成签到,获得积分10
33秒前
典雅三颜完成签到 ,获得积分10
36秒前
zaphkiel完成签到 ,获得积分10
37秒前
Son4904完成签到,获得积分10
38秒前
pengpeng完成签到,获得积分10
38秒前
taoxz521完成签到 ,获得积分10
39秒前
月军完成签到,获得积分10
39秒前
蓝胖子完成签到 ,获得积分10
40秒前
糖醋可乐完成签到,获得积分10
43秒前
疯狂的凡梦完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597638
求助须知:如何正确求助?哪些是违规求助? 4009167
关于积分的说明 12409939
捐赠科研通 3688401
什么是DOI,文献DOI怎么找? 2033184
邀请新用户注册赠送积分活动 1066430
科研通“疑难数据库(出版商)”最低求助积分说明 951650