Toward Predicting 30-Day Readmission Among Oncology Patients: Identifying Timely and Actionable Risk Factors

随机森林 下垂 医学 接收机工作特性 心理干预 预测建模 内科学 队列 史诗 急诊医学 婚姻状况 机器学习 人工智能 计算机科学 艺术 考古 文学类 精神科 环境卫生 历史 人口
作者
Sy Hwang,Ryan J. Urbanowicz,Selah Lynch,Tawnya M. Vernon,Kellie Bresz,Carolina Díaz Giraldo,Erin Kennedy,Max Leabhart,Troy Bleacher,Michael R. Ripchinski,Danielle L. Mowery,Randall A. Oyer
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (7) 被引量:6
标识
DOI:10.1200/cci.22.00097
摘要

PURPOSE Predicting 30-day readmission risk is paramount to improving the quality of patient care. In this study, we compare sets of patient-, provider-, and community-level variables that are available at two different points of a patient's inpatient encounter (first 48 hours and the full encounter) to train readmission prediction models and identify possible targets for appropriate interventions that can potentially reduce avoidable readmissions. METHODS Using electronic health record data from a retrospective cohort of 2,460 oncology patients and a comprehensive machine learning analysis pipeline, we trained and tested models predicting 30-day readmission on the basis of data available within the first 48 hours of admission and from the entire hospital encounter. RESULTS Leveraging all features, the light gradient boosting model produced higher, but comparable performance (area under receiver operating characteristic curve [AUROC]: 0.711) with the Epic model (AUROC: 0.697). Given features in the first 48 hours, the random forest model produces higher AUROC (0.684) than the Epic model (AUROC: 0.676). Both models flagged patients with a similar distribution of race and sex; however, our light gradient boosting and random forest models were more inclusive, flagging more patients among younger age groups. The Epic models were more sensitive to identifying patients with an average lower zip income. Our 48-hour models were powered by novel features at various levels: patient (weight change over 365 days, depression symptoms, laboratory values, and cancer type), hospital (winter discharge and hospital admission type), and community (zip income and marital status of partner). CONCLUSION We developed and validated models comparable with the existing Epic 30-day readmission models with several novel actionable insights that could create service interventions deployed by the case management or discharge planning teams that may decrease readmission rates over time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助hjx采纳,获得30
1秒前
ww完成签到,获得积分10
2秒前
星辰大海应助Ventus采纳,获得10
3秒前
Genius发布了新的文献求助10
5秒前
好吃完成签到,获得积分20
5秒前
kitty发布了新的文献求助10
6秒前
吡嗪发布了新的文献求助10
6秒前
科研通AI2S应助hkh采纳,获得10
7秒前
yuli应助hkh采纳,获得10
7秒前
浮游应助hkh采纳,获得10
7秒前
浮游应助hkh采纳,获得10
7秒前
Zx_1993应助hkh采纳,获得10
7秒前
浮游应助hkh采纳,获得10
7秒前
科研通AI2S应助hkh采纳,获得10
7秒前
浮游应助hkh采纳,获得10
7秒前
浮游应助hkh采纳,获得10
7秒前
手抓饼啊发布了新的文献求助10
7秒前
浮游应助hkh采纳,获得10
7秒前
8秒前
隐形曼青应助木木采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
123木头人发布了新的文献求助10
11秒前
神勇若雁发布了新的文献求助10
11秒前
斧王发布了新的文献求助10
12秒前
浮游应助kitty采纳,获得10
14秒前
刻苦的糖豆完成签到,获得积分10
16秒前
hey完成签到,获得积分10
18秒前
锅里有两条鱼完成签到 ,获得积分10
18秒前
18秒前
20秒前
22秒前
吡嗪完成签到,获得积分10
23秒前
大脸猫完成签到 ,获得积分10
23秒前
天天快乐应助诸葛一笑采纳,获得10
24秒前
25秒前
sscihard完成签到,获得积分10
26秒前
沉迷科研无法自拔完成签到,获得积分10
26秒前
26秒前
高贵路灯完成签到,获得积分10
29秒前
缥缈的寒梦完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419734
求助须知:如何正确求助?哪些是违规求助? 4535018
关于积分的说明 14147731
捐赠科研通 4451737
什么是DOI,文献DOI怎么找? 2441853
邀请新用户注册赠送积分活动 1433423
关于科研通互助平台的介绍 1410663