Development of Raman Calibration Model Without Culture Data for In-Line Analysis of Metabolites in Cell Culture Media

拉曼光谱 校准 分析物 生物系统 化学 谱线 分析化学(期刊) 材料科学 色谱法 物理 光学 数学 生物 统计 天文
作者
Risa Hara,Wataru Kobayashi,Hiroaki Yamanaka,Kodai Murayama,Soichiro Shimoda,Yukihiro Ozaki
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:77 (5): 521-533 被引量:1
标识
DOI:10.1177/00037028231160197
摘要

In this study, we developed a method to build Raman calibration models without culture data for cell culture monitoring. First, Raman spectra were collected and then analyzed for the signals of all the mentioned analytes: glucose, lactate, glutamine, glutamate, ammonia, antibody, viable cells, media, and feed agent. Using these spectral data, the specific peak positions and intensities for each factor were detected. Next, according to the design of the experiment method, samples were prepared by mixing the above-mentioned factors. Raman spectra of these samples were collected and were used to build calibration models. Several combinations of spectral pretreatments and wavenumber regions were compared to optimize the calibration model for cell culture monitoring without culture data. The accuracy of the developed calibration model was evaluated by performing actual cell culture and fitting the in-line measured spectra to the developed calibration model. As a result, the calibration model achieved sufficiently good accuracy for the three components, glucose, lactate, and antibody (root mean square errors of prediction, or RMSEP = 0.23, 0.29, and 0.20 g/L, respectively). This study has presented innovative results in developing a culture monitoring method without using culture data, while using a basic conventional method of investigating the Raman spectra of each component in the culture media and then utilizing a design of experiment approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助流北爷采纳,获得10
刚刚
乐乐应助奋斗的小林采纳,获得10
刚刚
sankumao完成签到,获得积分10
刚刚
京阿尼发布了新的文献求助10
刚刚
xia发布了新的文献求助10
1秒前
SCI发布了新的文献求助10
2秒前
2秒前
zhui发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
马静雨完成签到,获得积分20
3秒前
4秒前
4秒前
快乐小白菜应助shenzhou9采纳,获得10
4秒前
无花果应助aertom采纳,获得10
4秒前
小田发布了新的文献求助10
4秒前
sankumao发布了新的文献求助30
4秒前
奋斗的盼柳完成签到 ,获得积分10
5秒前
6秒前
Jasper应助handsomecat采纳,获得10
6秒前
6秒前
李雪完成签到,获得积分10
7秒前
7秒前
sv发布了新的文献求助10
9秒前
小田完成签到,获得积分10
9秒前
茶茶完成签到,获得积分20
9秒前
苏兴龙完成签到,获得积分10
9秒前
坚强的亦云-333完成签到,获得积分10
9秒前
Ava应助dan1029采纳,获得10
10秒前
10秒前
10秒前
奶糖最可爱完成签到,获得积分10
11秒前
11秒前
mojomars发布了新的文献求助10
12秒前
幽壑之潜蛟应助茶茶采纳,获得10
12秒前
13秒前
13秒前
13秒前
迅速海云完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794