Development of Raman Calibration Model Without Culture Data for In-Line Analysis of Metabolites in Cell Culture Media

拉曼光谱 校准 分析物 生物系统 化学 谱线 分析化学(期刊) 材料科学 色谱法 物理 光学 数学 生物 统计 天文
作者
Risa Hara,Wataru Kobayashi,Hiroaki Yamanaka,Kodai Murayama,Soichiro Shimoda,Yukihiro Ozaki
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:77 (5): 521-533 被引量:1
标识
DOI:10.1177/00037028231160197
摘要

In this study, we developed a method to build Raman calibration models without culture data for cell culture monitoring. First, Raman spectra were collected and then analyzed for the signals of all the mentioned analytes: glucose, lactate, glutamine, glutamate, ammonia, antibody, viable cells, media, and feed agent. Using these spectral data, the specific peak positions and intensities for each factor were detected. Next, according to the design of the experiment method, samples were prepared by mixing the above-mentioned factors. Raman spectra of these samples were collected and were used to build calibration models. Several combinations of spectral pretreatments and wavenumber regions were compared to optimize the calibration model for cell culture monitoring without culture data. The accuracy of the developed calibration model was evaluated by performing actual cell culture and fitting the in-line measured spectra to the developed calibration model. As a result, the calibration model achieved sufficiently good accuracy for the three components, glucose, lactate, and antibody (root mean square errors of prediction, or RMSEP = 0.23, 0.29, and 0.20 g/L, respectively). This study has presented innovative results in developing a culture monitoring method without using culture data, while using a basic conventional method of investigating the Raman spectra of each component in the culture media and then utilizing a design of experiment approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鸟芋圆露露完成签到 ,获得积分10
刚刚
1秒前
1秒前
方兴未艾完成签到 ,获得积分10
1秒前
小炮弹发布了新的文献求助10
1秒前
Sunshine完成签到,获得积分10
1秒前
2秒前
2秒前
了解发布了新的文献求助10
2秒前
2秒前
3秒前
wei发布了新的文献求助10
3秒前
宁少爷应助孤独的醉易采纳,获得30
3秒前
小C完成签到,获得积分10
4秒前
好困芽完成签到,获得积分10
4秒前
5秒前
5秒前
Joker发布了新的文献求助10
6秒前
6秒前
沧海横流发布了新的文献求助10
7秒前
薰硝壤应助stop here采纳,获得50
8秒前
8秒前
111发布了新的文献求助30
8秒前
大佛老爷发布了新的文献求助10
8秒前
acuter发布了新的文献求助10
8秒前
明理的幻悲完成签到,获得积分10
8秒前
8秒前
9秒前
科研小虫应助ww采纳,获得10
11秒前
李爱国应助Tigher采纳,获得30
12秒前
hhhs发布了新的文献求助10
12秒前
li完成签到 ,获得积分10
12秒前
可靠的书桃应助小小采纳,获得10
12秒前
sjbxzpf发布了新的文献求助10
13秒前
快乐蜗牛发布了新的文献求助10
14秒前
大佛老爷完成签到,获得积分20
14秒前
筱灬发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135677
求助须知:如何正确求助?哪些是违规求助? 2786507
关于积分的说明 7777976
捐赠科研通 2442633
什么是DOI,文献DOI怎么找? 1298612
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600847