亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HeteroGuard: Defending Heterogeneous Graph Neural Networks against Adversarial Attacks

对抗制 计算机科学 同种类的 水准点(测量) 深层神经网络 人工神经网络 图形 理论计算机科学 GSM演进的增强数据速率 节点(物理) 计算机安全 人工智能 数学 结构工程 大地测量学 组合数学 工程类 地理
作者
Udesh Kumarasinghe,Mohamed Nabeel,Kasun De Zoysa,Kasun Gunawardana,Charitha Elvitigala
标识
DOI:10.1109/icdmw58026.2022.00096
摘要

Graph neural networks (GNNs) have achieved re-markable success in many application domains including drug discovery, program analysis, social networks, and cyber security. However, it has been shown that they are not robust against adversarial attacks. In the recent past, many adversarial attacks against homogeneous GNNs and defenses have been proposed. However, most of these attacks and defenses are ineffective on heterogeneous graphs as these algorithms optimize under the assumption that all edge and node types are of the same and further they introduce semantically incorrect edges to perturbed graphs. Here, we first develop, HetePR-BCD, a training time (i.e. poisoning) adversarial attack on heterogeneous graphs that outperforms the start of the art attacks proposed in the literature. Our experimental results on three benchmark heterogeneous graphs show that our attack, with a small perturbation budget of 15 %, degrades the performance up to 32 % (Fl score) compared to existing ones. It is concerning to mention that existing defenses are not robust against our attack. These defenses primarily modify the GNN's neural message passing operators assuming that adversarial attacks tend to connect nodes with dissimilar features, but this assumption does not hold in heterogeneous graphs. We construct HeteroGuard, an effective defense against training time attacks including HetePR-BCD on heterogeneous models. HeteroGuard outperforms the existing defenses by 3–8 % on Fl score depending on the benchmark dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干青完成签到,获得积分10
7秒前
科研通AI6应助聪明怜阳采纳,获得10
11秒前
16秒前
16秒前
懒癌晚期发布了新的文献求助10
21秒前
lt发布了新的文献求助10
21秒前
oneshamok完成签到 ,获得积分10
23秒前
华仔应助Yashyi采纳,获得10
32秒前
gszy1975完成签到,获得积分10
51秒前
1分钟前
1分钟前
Yashyi发布了新的文献求助10
1分钟前
1分钟前
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
与山发布了新的文献求助10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
liubai发布了新的文献求助10
2分钟前
3分钟前
JamesPei应助旺旺采纳,获得10
3分钟前
3分钟前
liubai发布了新的文献求助50
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
3分钟前
俭朴蜜蜂完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
枯叶蝶完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI6应助Cristina采纳,获得10
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590513
求助须知:如何正确求助?哪些是违规求助? 4674789
关于积分的说明 14795291
捐赠科研通 4632750
什么是DOI,文献DOI怎么找? 2532806
邀请新用户注册赠送积分活动 1501296
关于科研通互助平台的介绍 1468687