Machine Learning Advances in Predicting Peptide/Protein‐Protein Interactions Based on Sequence Information for Lead Peptides Discovery

计算机科学 序列(生物学) 铅(地质) 计算生物学 蛋白质测序 化学 肽序列 生物信息学 生物化学 生物 基因 古生物学
作者
Jiahao Ye,Li An,Hao Zheng,Banghua Yang,Yiming Lu
出处
期刊:Advanced biology [Wiley]
卷期号:7 (6) 被引量:12
标识
DOI:10.1002/adbi.202200232
摘要

Peptides have shown increasing advantages and significant clinical value in drug discovery and development. With the development of high-throughput technologies and artificial intelligence (AI), machine learning (ML) methods for discovering new lead peptides have been expanded and incorporated into rational drug design. Predictions of peptide-protein interactions (PepPIs) and protein-protein interactions (PPIs) are both opportunities and challenges in computational biology, which will help to better understand the mechanisms of disease and provide the impetus for the discovery of lead peptides. This paper comprehensively reviews computational models for PepPI and PPI predictions. It begins with an introduction of various databases of peptide ligands and target proteins. Then it discusses data formats and feature representations for proteins and peptides. Furthermore, classical ML methods and emerging deep learning (DL) methods that can be used to train prediction models of PepPI and PPI are classified into four categories, and their advantages and disadvantages are analyzed. To assess the relative performance of different models, different validation protocols and evaluation indexes are discussed. The goal of this review is to help researchers quickly get started to develop computational frameworks using these integrated resources and eventually promote the discovery of lead peptides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陌上花开发布了新的文献求助10
刚刚
pawn完成签到,获得积分10
1秒前
花生发布了新的文献求助10
1秒前
liufumei发布了新的文献求助10
1秒前
wdy111应助GCY采纳,获得20
2秒前
LUMOS完成签到,获得积分10
2秒前
2秒前
3秒前
hdh发布了新的文献求助10
3秒前
QQWQEQRQ发布了新的文献求助10
3秒前
小蘑菇应助mmc采纳,获得10
3秒前
接好运发布了新的文献求助20
3秒前
4秒前
zhangzhi发布了新的文献求助10
5秒前
菠菜发布了新的文献求助200
6秒前
望望旺仔牛奶完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
小二郎应助梦醒采纳,获得10
7秒前
西扬完成签到,获得积分10
7秒前
林结衣完成签到,获得积分10
8秒前
8秒前
斯文败类应助Mark采纳,获得10
8秒前
8秒前
clay_park完成签到,获得积分10
8秒前
czx发布了新的文献求助10
8秒前
天天快乐应助leodu采纳,获得10
9秒前
9秒前
9秒前
牛姐发布了新的文献求助10
9秒前
陌上花开完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
Nariy完成签到,获得积分10
12秒前
jdjd发布了新的文献求助10
12秒前
pawn发布了新的文献求助30
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650