What users’ musical preference on Twitter reveals about psychological disorders

心理学 偏爱 语义学(计算机科学) 社会化媒体 歌词 焦虑 词汇 认知心理学 情绪分析 应用心理学 计算机科学 自然语言处理 万维网 语言学 微观经济学 经济 艺术 程序设计语言 哲学 文学类 精神科
作者
Soroush Zamani Alavijeh,Fattane Zarrinkalam,Zeinab Noorian,Anahita Mehrpour,Kobra Etminani
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (3): 103269-103269 被引量:3
标识
DOI:10.1016/j.ipm.2023.103269
摘要

Previous research found a strong relation between the users’ psychological disorders and their language use in social media posts in terms of vocabulary selection, emotional expressions, and psychometric attributes. However, although studying the association between psychological disorders and musical preference is considered as rather an old tradition in the clinical analysis of health data, it is not explored through the lens of social media analytics. In this study, we investigate which attributes of the music posted on social media are associated with mental health conditions of Twitter users. We created a large-scale dataset of 1519 Twitter users with six self-reported psychological disorders (depression, bipolar, anxiety, panic, post-traumatic stress disorder, and borderline) and matched with 2480 control users. We then conduct an observational study to investigate the relationship between the users’ psychological disorders and their musical preference by analyzing lyrics of the music tracks that the users shared on Twitter from multiple dimensions including word usage, linguistic style, sentiment and emotion patterns, topical interests and underlying semantics. Our findings reveal descriptive differences on the linguistic and semantic features of music tracks of affected users compared to control individuals and among users from different psychological disorders. Additionally, we build a feature-based and an (explainable) deep learning-based binary classifiers trained on disorder and control users and demonstrate that lyrics of the music tracks of users on Twitter can be considered as complementary information to their published posts to improve the accuracy of the disorder detection task. Overall, we find that the music attributes of users on Twitter allow inferences about their mental health status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婷婷应助赵先森采纳,获得10
刚刚
laohu2发布了新的文献求助10
2秒前
爆米花应助一直很安静采纳,获得10
5秒前
草原狼完成签到,获得积分10
6秒前
pan完成签到,获得积分10
6秒前
任性糖豆完成签到,获得积分10
7秒前
orixero应助孟威采纳,获得20
8秒前
9秒前
10秒前
11秒前
12秒前
一直很安静完成签到,获得积分10
12秒前
俊秀的汉堡完成签到,获得积分10
14秒前
赘婿应助kenna123采纳,获得10
15秒前
FashionBoy应助laohu2采纳,获得30
15秒前
iui飞完成签到,获得积分20
16秒前
洗剪吹发布了新的文献求助10
16秒前
17秒前
DJ想吃饭了完成签到,获得积分10
17秒前
17秒前
唠叨的听寒完成签到,获得积分10
18秒前
韶光与猫完成签到,获得积分10
19秒前
shufessm完成签到,获得积分0
19秒前
Aurora完成签到 ,获得积分10
20秒前
Owen应助iui飞采纳,获得10
21秒前
22秒前
洗剪吹完成签到,获得积分10
23秒前
小二郎应助个性的饼干采纳,获得10
24秒前
07发布了新的文献求助10
24秒前
24秒前
冷酷的墨镜完成签到,获得积分10
26秒前
孟威发布了新的文献求助20
26秒前
28秒前
smile发布了新的文献求助10
28秒前
nil驳回了Hello应助
29秒前
sissiarno应助huazhangchina采纳,获得30
29秒前
小晋完成签到,获得积分10
29秒前
corner发布了新的文献求助10
30秒前
Jasper应助程迦采纳,获得10
30秒前
31秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164075
求助须知:如何正确求助?哪些是违规求助? 2814831
关于积分的说明 7906671
捐赠科研通 2474391
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631797
版权声明 602198