HSNet: A hybrid semantic network for polyp segmentation

计算机科学 分割 卷积神经网络 编码器 人工智能 变压器 水准点(测量) 语义学(计算机科学) 人工神经网络 模式识别(心理学) 量子力学 操作系统 大地测量学 物理 电压 程序设计语言 地理
作者
Wenchao Zhang,Chong Fu,Yu Zheng,Fang‐Yuan Zhang,Yanli Zhao,Chiu‐Wing Sham
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:150: 106173-106173 被引量:68
标识
DOI:10.1016/j.compbiomed.2022.106173
摘要

Automatic polyp segmentation can help physicians to effectively locate polyps (a.k.a. region of interests) in clinical practice, in the way of screening colonoscopy images assisted by neural networks (NN). However, two significant bottlenecks hinder its effectiveness, disappointing physicians' expectations. (1) Changeable polyps in different scaling, orientation, and illumination, bring difficulty in accurate segmentation. (2) Current works building on a dominant decoder-encoder network tend to overlook appearance details (e.g., textures) for a tiny polyp, degrading the accuracy to differentiate polyps. For alleviating the bottlenecks, we investigate a hybrid semantic network (HSNet) that adopts both advantages of Transformer and convolutional neural networks (CNN), aiming at improving polyp segmentation. Our HSNet contains a cross-semantic attention module (CSA), a hybrid semantic complementary module (HSC), and a multi-scale prediction module (MSP). Unlike previous works on segmenting polyps, we newly insert the CSA module, which can fill the gap between low-level and high-level features via an interactive mechanism that exchanges two types of semantics from different NN attentions. By a dual-branch structure of Transformer and CNN, we newly design an HSC module, for capturing both long-range dependencies and local details of appearance. Besides, the MSP module can learn weights for fusing stage-level prediction masks of a decoder. Experimentally, we compared our work with 10 state-of-the-art works, including both recent and classical works, showing improved accuracy (via 7 evaluative metrics) over 5 benchmark datasets, e.g., it achieves 0.926/0.877 mDic/mIoU on Kvasir-SEG, 0.948/0.905 mDic/mIoU on ClinicDB, 0.810/0.735 mDic/mIoU on ColonDB, 0.808/0.74 mDic/mIoU on ETIS, and 0.903/0.839 mDic/mIoU on Endoscene. The proposed model is available at (https://github.com/baiboat/HSNet).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助袁国惠采纳,获得10
刚刚
刚刚
哈哈哈完成签到,获得积分10
1秒前
小张发布了新的文献求助10
1秒前
温柔若完成签到,获得积分10
1秒前
称心的问薇完成签到,获得积分10
2秒前
2秒前
高兴的半凡完成签到 ,获得积分10
3秒前
123完成签到,获得积分10
3秒前
Answer完成签到,获得积分10
3秒前
诚心凝旋发布了新的文献求助10
3秒前
孟柠柠完成签到,获得积分10
4秒前
4秒前
哈哈哈发布了新的文献求助10
4秒前
SYLH应助di采纳,获得10
5秒前
韭菜盒子完成签到,获得积分20
5秒前
5秒前
6秒前
饭小心发布了新的文献求助10
6秒前
tanjianxin完成签到,获得积分10
6秒前
wanci应助帅玉玉采纳,获得10
6秒前
Ellie完成签到 ,获得积分10
6秒前
晴天完成签到 ,获得积分10
7秒前
123完成签到,获得积分10
7秒前
7秒前
EOFG0PW发布了新的文献求助10
8秒前
buno应助yug采纳,获得10
8秒前
hgh完成签到,获得积分10
8秒前
001关闭了001文献求助
9秒前
研友_VZG7GZ应助Fareth采纳,获得10
9秒前
10秒前
韭菜盒子发布了新的文献求助10
10秒前
10秒前
大意的安白完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
学术蟑螂完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740