亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HSNet: A hybrid semantic network for polyp segmentation

计算机科学 分割 卷积神经网络 编码器 人工智能 变压器 水准点(测量) 语义学(计算机科学) 人工神经网络 模式识别(心理学) 量子力学 操作系统 大地测量学 物理 电压 程序设计语言 地理
作者
Wenchao Zhang,Chong Fu,Yu Zheng,Fang‐Yuan Zhang,Yanli Zhao,Chiu‐Wing Sham
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:150: 106173-106173 被引量:117
标识
DOI:10.1016/j.compbiomed.2022.106173
摘要

Automatic polyp segmentation can help physicians to effectively locate polyps (a.k.a. region of interests) in clinical practice, in the way of screening colonoscopy images assisted by neural networks (NN). However, two significant bottlenecks hinder its effectiveness, disappointing physicians' expectations. (1) Changeable polyps in different scaling, orientation, and illumination, bring difficulty in accurate segmentation. (2) Current works building on a dominant decoder-encoder network tend to overlook appearance details (e.g., textures) for a tiny polyp, degrading the accuracy to differentiate polyps. For alleviating the bottlenecks, we investigate a hybrid semantic network (HSNet) that adopts both advantages of Transformer and convolutional neural networks (CNN), aiming at improving polyp segmentation. Our HSNet contains a cross-semantic attention module (CSA), a hybrid semantic complementary module (HSC), and a multi-scale prediction module (MSP). Unlike previous works on segmenting polyps, we newly insert the CSA module, which can fill the gap between low-level and high-level features via an interactive mechanism that exchanges two types of semantics from different NN attentions. By a dual-branch structure of Transformer and CNN, we newly design an HSC module, for capturing both long-range dependencies and local details of appearance. Besides, the MSP module can learn weights for fusing stage-level prediction masks of a decoder. Experimentally, we compared our work with 10 state-of-the-art works, including both recent and classical works, showing improved accuracy (via 7 evaluative metrics) over 5 benchmark datasets, e.g., it achieves 0.926/0.877 mDic/mIoU on Kvasir-SEG, 0.948/0.905 mDic/mIoU on ClinicDB, 0.810/0.735 mDic/mIoU on ColonDB, 0.808/0.74 mDic/mIoU on ETIS, and 0.903/0.839 mDic/mIoU on Endoscene. The proposed model is available at (https://github.com/baiboat/HSNet).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zpli完成签到 ,获得积分10
2秒前
万能图书馆应助坚果采纳,获得10
12秒前
16秒前
思源应助悠悠采纳,获得10
17秒前
充电宝应助lulu采纳,获得10
17秒前
20秒前
与我常在发布了新的文献求助20
22秒前
傻丢发布了新的文献求助10
25秒前
无极微光应助与我常在采纳,获得20
33秒前
悠悠完成签到,获得积分20
37秒前
42秒前
与我常在完成签到,获得积分20
42秒前
悠悠发布了新的文献求助10
46秒前
54秒前
温柔锦程发布了新的文献求助10
56秒前
58秒前
58秒前
1分钟前
坚果发布了新的文献求助10
1分钟前
轻松戎发布了新的文献求助10
1分钟前
一叶不知秋完成签到,获得积分20
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
Electrocatalysis完成签到,获得积分10
1分钟前
lulu发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助30
1分钟前
Hello应助泪雨煊采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
泪雨煊完成签到,获得积分10
2分钟前
泪雨煊发布了新的文献求助10
2分钟前
Otter完成签到,获得积分10
2分钟前
柳贯一完成签到,获得积分10
2分钟前
科研通AI6.1应助任性学姐采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739408
求助须知:如何正确求助?哪些是违规求助? 5386143
关于积分的说明 15339719
捐赠科研通 4881969
什么是DOI,文献DOI怎么找? 2624052
邀请新用户注册赠送积分活动 1572745
关于科研通互助平台的介绍 1529540