Inverse design of shell-based mechanical metamaterial with customized loading curves based on machine learning and genetic algorithm

反向 人工神经网络 计算机科学 算法 格子(音乐) 变形(气象学) 结构工程 几何学 材料科学 数学 人工智能 工程类 复合材料 物理 声学
作者
Yongzhen Wang,Qinglei Zeng,Jizhen Wang,Ying Li,Daining Fang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:401: 115571-115571 被引量:68
标识
DOI:10.1016/j.cma.2022.115571
摘要

Triply periodic minimal surfaces (TPMSs) have attracted great attention due to their distinct advantages such as high strength and light weight compared to traditional lattice structures. Most previous works focus on forward prediction of the mechanical behaviors of TPMSs. Inverse design of the configurations based on customized loading curves would be of great value in engineering applications such as energy absorption. Inspired by TPMSs, we propose the concept of the shell-based mechanical metamaterial (SMM) in this work, which possesses the main geometrical features and mechanical properties of TPMSs. A novel approach, combining machine learning (ML) for high efficiency and genetic algorithm (GA) for global optimization, is put forward to inversely design the configuration of SMM. Two strategies are introduced to develop artificial neural networks (ANNs) for the prediction of their loading curves under compression. GA is then employed to design objective configurations with customized loading curves. The connection between the loading curves and deformation modes is also illustrated to demonstrate the values of such inverse design. SMM with a strain-hardening curve tends to exhibit globally uniform deformation, while SMM with a strain-softening curve tends to present layer-by-layer deformation during compression, which is demonstrated by experiments and simulations. This work fills the blanks of inverse design of SMM with customized loading curves and contributes to the concept of structure design combining ML and traditional optimization approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小恐龙完成签到,获得积分10
刚刚
四月发布了新的文献求助10
1秒前
共享精神应助Youth采纳,获得10
2秒前
深渊完成签到 ,获得积分10
2秒前
5秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
科目三应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得30
7秒前
小奕应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
7秒前
无花果应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
7秒前
jing应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
希望天下0贩的0应助逸寒采纳,获得10
9秒前
Owen应助zsxml采纳,获得10
10秒前
JamesPei应助淡淡夕阳采纳,获得10
11秒前
蜜桃小丸子完成签到 ,获得积分10
11秒前
12秒前
生椰拿铁发布了新的文献求助30
12秒前
gqzszzy完成签到,获得积分10
13秒前
难过无血发布了新的文献求助10
13秒前
13秒前
bofu发布了新的文献求助30
13秒前
胖胖不怕胖完成签到,获得积分10
14秒前
筱筱完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956302
求助须知:如何正确求助?哪些是违规求助? 3502493
关于积分的说明 11108085
捐赠科研通 3233179
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870515
科研通“疑难数据库(出版商)”最低求助积分说明 802105