Inverse design of shell-based mechanical metamaterial with customized loading curves based on machine learning and genetic algorithm

反向 人工神经网络 计算机科学 算法 格子(音乐) 变形(气象学) 结构工程 几何学 材料科学 数学 人工智能 工程类 复合材料 物理 声学
作者
Yongzhen Wang,Qinglei Zeng,Jizhen Wang,Ying Li,Daining Fang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:401: 115571-115571 被引量:68
标识
DOI:10.1016/j.cma.2022.115571
摘要

Triply periodic minimal surfaces (TPMSs) have attracted great attention due to their distinct advantages such as high strength and light weight compared to traditional lattice structures. Most previous works focus on forward prediction of the mechanical behaviors of TPMSs. Inverse design of the configurations based on customized loading curves would be of great value in engineering applications such as energy absorption. Inspired by TPMSs, we propose the concept of the shell-based mechanical metamaterial (SMM) in this work, which possesses the main geometrical features and mechanical properties of TPMSs. A novel approach, combining machine learning (ML) for high efficiency and genetic algorithm (GA) for global optimization, is put forward to inversely design the configuration of SMM. Two strategies are introduced to develop artificial neural networks (ANNs) for the prediction of their loading curves under compression. GA is then employed to design objective configurations with customized loading curves. The connection between the loading curves and deformation modes is also illustrated to demonstrate the values of such inverse design. SMM with a strain-hardening curve tends to exhibit globally uniform deformation, while SMM with a strain-softening curve tends to present layer-by-layer deformation during compression, which is demonstrated by experiments and simulations. This work fills the blanks of inverse design of SMM with customized loading curves and contributes to the concept of structure design combining ML and traditional optimization approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小菜白发布了新的文献求助10
1秒前
wickedzz完成签到,获得积分10
2秒前
向上的小v完成签到 ,获得积分10
2秒前
烟花应助谨慎山彤采纳,获得10
3秒前
5秒前
You完成签到 ,获得积分10
6秒前
Kerwin完成签到,获得积分10
6秒前
7秒前
尘埃之影完成签到,获得积分10
8秒前
萧水白应助jacob258采纳,获得50
9秒前
caffeine应助OMR123采纳,获得10
10秒前
三杠发布了新的文献求助10
10秒前
琦琦国王发布了新的文献求助20
11秒前
Arthur完成签到 ,获得积分10
13秒前
Janet_Jing完成签到 ,获得积分10
13秒前
ncwgx完成签到,获得积分10
14秒前
斯文败类应助了尘采纳,获得10
14秒前
15秒前
16秒前
SHD完成签到 ,获得积分10
16秒前
16秒前
16秒前
充电宝应助三杠采纳,获得10
17秒前
21秒前
乐观蚂蚁完成签到 ,获得积分10
22秒前
清爽的胡萝卜完成签到 ,获得积分10
22秒前
互助遵法尚德应助青苔采纳,获得10
24秒前
山茶发布了新的文献求助10
24秒前
24秒前
典雅涵瑶完成签到,获得积分10
25秒前
25秒前
打打应助adeno采纳,获得10
26秒前
晚灯君完成签到 ,获得积分10
27秒前
28秒前
Hello应助冷月芳华采纳,获得10
28秒前
草木完成签到,获得积分10
28秒前
夏木完成签到 ,获得积分10
29秒前
yimuchenlin发布了新的文献求助10
29秒前
29秒前
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162623
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900768
捐赠科研通 2473078
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175