Augmented Dual-Contrastive Aggregation Learning for Unsupervised Visible-Infrared Person Re-Identification

模态(人机交互) 计算机科学 鉴定(生物学) 人工智能 透视图(图形) 特征学习 模式识别(心理学) 机器学习 植物 生物
作者
Bin Yang,Mang Ye,Jun Chen,Zesen Wu
标识
DOI:10.1145/3503161.3548198
摘要

Visible infrared person re-identification (VI-ReID) aims at searching out the corresponding infrared (visible) images from a gallery set captured by other spectrum cameras. Recent works mainly focus on supervised VI-ReID methods that require plenty of cross-modality (visible-infrared) identity labels which are more expensive than the annotations in single-modality person ReID. For the unsupervised learning visible infrared re-identification (USL-VI-ReID), the large cross-modality discrepancies lead to difficulties in generating reliable cross-modality labels and learning modality-invariant features without any annotations. To address this problem, we propose a novel Augmented Dual-Contrastive Aggregation (ADCA) learning framework. Specifically, a dual-path contrastive learning framework with two modality-specific memories is proposed to learn the intra-modality person representation. To associate positive cross-modality identities, we design a cross-modality memory aggregation module with count priority to select highly associated positive samples, and aggregate their corresponding memory features at the cluster level, ensuring that the optimization is explicitly concentrated on the modality-irrelevant perspective. Extensive experiments demonstrate that our proposed ADCA significantly outperforms existing unsupervised methods under various settings, and even surpasses some supervised counterparts, facilitating VI-ReID to real-world deployment. Code is available at https://github.com/yangbincv/ADCA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fengkai_CHEN发布了新的文献求助10
1秒前
CipherSage应助苗条的老九采纳,获得10
1秒前
22222发布了新的文献求助30
3秒前
zzzdes完成签到,获得积分10
3秒前
踏实寄松完成签到,获得积分10
3秒前
4秒前
4秒前
yukeshou完成签到 ,获得积分10
4秒前
HJZ完成签到,获得积分10
4秒前
陈晓迪1992完成签到,获得积分10
5秒前
向寒光完成签到 ,获得积分10
7秒前
7秒前
默认用户名完成签到 ,获得积分10
9秒前
11秒前
科研废物完成签到 ,获得积分10
12秒前
李爱国应助火龙果采纳,获得10
13秒前
fdawn完成签到 ,获得积分10
14秒前
15秒前
17秒前
18秒前
张张完成签到,获得积分20
20秒前
21秒前
万能图书馆应助zxh123采纳,获得10
22秒前
123发布了新的文献求助10
23秒前
CodeCraft应助Leoniko采纳,获得10
23秒前
小灰灰完成签到,获得积分10
23秒前
23秒前
23秒前
25秒前
26秒前
宋鹏浩发布了新的文献求助10
26秒前
27秒前
29秒前
29秒前
30秒前
公孙世往发布了新的文献求助10
30秒前
Lsy完成签到,获得积分10
31秒前
火龙果发布了新的文献求助10
32秒前
Leoniko完成签到,获得积分10
32秒前
FashionBoy应助张张采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388