Augmented Dual-Contrastive Aggregation Learning for Unsupervised Visible-Infrared Person Re-Identification

模态(人机交互) 计算机科学 鉴定(生物学) 人工智能 透视图(图形) 特征学习 模式识别(心理学) 机器学习 植物 生物
作者
Bin Yang,Mang Ye,Jun Chen,Zesen Wu
标识
DOI:10.1145/3503161.3548198
摘要

Visible infrared person re-identification (VI-ReID) aims at searching out the corresponding infrared (visible) images from a gallery set captured by other spectrum cameras. Recent works mainly focus on supervised VI-ReID methods that require plenty of cross-modality (visible-infrared) identity labels which are more expensive than the annotations in single-modality person ReID. For the unsupervised learning visible infrared re-identification (USL-VI-ReID), the large cross-modality discrepancies lead to difficulties in generating reliable cross-modality labels and learning modality-invariant features without any annotations. To address this problem, we propose a novel Augmented Dual-Contrastive Aggregation (ADCA) learning framework. Specifically, a dual-path contrastive learning framework with two modality-specific memories is proposed to learn the intra-modality person representation. To associate positive cross-modality identities, we design a cross-modality memory aggregation module with count priority to select highly associated positive samples, and aggregate their corresponding memory features at the cluster level, ensuring that the optimization is explicitly concentrated on the modality-irrelevant perspective. Extensive experiments demonstrate that our proposed ADCA significantly outperforms existing unsupervised methods under various settings, and even surpasses some supervised counterparts, facilitating VI-ReID to real-world deployment. Code is available at https://github.com/yangbincv/ADCA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恰你眉目如昨完成签到 ,获得积分10
1秒前
2秒前
3秒前
karan完成签到,获得积分10
3秒前
仁爱海莲完成签到 ,获得积分10
4秒前
4秒前
gszy1975发布了新的文献求助10
4秒前
duohongrui完成签到 ,获得积分10
4秒前
5秒前
7秒前
深情安青应助螺蛳粉采纳,获得10
8秒前
hexiang关注了科研通微信公众号
8秒前
bkagyin应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
竹筏过海应助科研通管家采纳,获得30
9秒前
SciGPT应助直立行走的乌龟采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
沈sm发布了新的文献求助10
10秒前
天天快乐应助清秀的怀蝶采纳,获得10
10秒前
詹卫卫完成签到 ,获得积分10
10秒前
香蕉觅云应助Timberlake采纳,获得10
11秒前
治愈完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
ggyy发布了新的文献求助10
12秒前
zz发布了新的文献求助10
12秒前
gypsophila发布了新的文献求助10
13秒前
13秒前
clearlove完成签到,获得积分10
14秒前
赘婿应助Yan采纳,获得10
14秒前
金妖靜完成签到,获得积分10
14秒前
RRRRRRR完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147695
求助须知:如何正确求助?哪些是违规求助? 2798784
关于积分的说明 7831337
捐赠科研通 2455622
什么是DOI,文献DOI怎么找? 1306889
科研通“疑难数据库(出版商)”最低求助积分说明 627943
版权声明 601587