Estimation of Appendicular Skeletal Muscle Mass for Women Aged 60-70 Years Using a Machine Learning Approach

生物电阻抗分析 医学 人体测量学 体质指数 线性回归 腰围 Lasso(编程语言) 回归分析 统计 横断面研究 标准误差 平淡——奥特曼情节 数学 协议限制 核医学 内科学 计算机科学 病理 万维网
作者
Jianan Shi,Qiang He,Yang Pan,Xianliang Zhang,Ming Li,Si Chen
出处
期刊:Journal of the American Medical Directors Association [Elsevier BV]
卷期号:23 (12): 1985.e1-1985.e7 被引量:4
标识
DOI:10.1016/j.jamda.2022.09.002
摘要

This article aimed to develop and validate an anthropometric equation based on the least absolute shrinkage and selection operator (LASSO) regression, a machine learning approach, to predict appendicular skeletal muscle mass (ASM) in 60-70-year-old women.A cross-sectional study.Community-dwelling women aged 60-70 years.A total of 1296 community-dwelling women aged 60-70 years were randomly divided into the development or the validation group (1:1 ratio). ASM was evaluated by bioelectrical impedance analysis (BIA) as the reference. Variables including weight, height, body mass index (BMI), sitting height, waist-to-hip ratio (WHR), calf circumference (CC), and 5 summary measures of limb length were incorporated as candidate predictors. LASSO regression was used to select predictors with 10-fold cross-validation, and multiple linear regression was applied to develop the BIA-measured ASM prediction equation. Paired t test and Bland-Altman analysis were used to validate agreement.Weight, WHR, CC, and sitting height were selected by LASSO regression as independent variables and the equation is ASM = 0.2308 × weight (kg) - 27.5652 × WHR + 8.0179 × CC (m) + 2.3772 × Sitting height (m) + 22.2405 (adjusted R2 = 0.848, standard error of the estimate = 0.661 kg, P < .001). Bland-Altman analysis showed a high agreement between BIA-measured ASM and predicted ASM that the mean difference between the 2 methods was -0.041 kg, with the 95% limits of agreement of -1.441 to 1.359 kg.The equation for 60-70-year-old women could provide an available measurement of ASM for communities that cannot equip with BIA, which promotes the early screening of sarcopenia at the community level. Additionally, sitting height could predict ASM effectively, suggesting that maybe it can be used in further studies of muscle mass.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助默茗采纳,获得10
刚刚
ka123发布了新的文献求助10
1秒前
alan66完成签到,获得积分20
1秒前
3秒前
4秒前
佳佳发布了新的文献求助10
5秒前
152van发布了新的文献求助10
7秒前
SONNG完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
在水一方应助zhonghy0219采纳,获得10
9秒前
zjq发布了新的文献求助10
9秒前
酷波er应助刘露采纳,获得30
10秒前
10秒前
ka123完成签到,获得积分10
10秒前
12秒前
酷波er应助黄鸿祥采纳,获得10
13秒前
123456发布了新的文献求助10
13秒前
goodjust完成签到 ,获得积分10
14秒前
NexusExplorer应助152van采纳,获得10
14秒前
大胆孤风发布了新的文献求助30
14秒前
无心发布了新的文献求助10
14秒前
青余完成签到,获得积分10
16秒前
圈圈发布了新的文献求助10
16秒前
16秒前
16秒前
大模型应助hulahula采纳,获得10
18秒前
默茗发布了新的文献求助10
19秒前
21秒前
朴素采文发布了新的文献求助10
21秒前
ran发布了新的文献求助10
21秒前
蒋芳华发布了新的文献求助10
23秒前
25秒前
刘露完成签到,获得积分10
26秒前
26秒前
黄鸿祥发布了新的文献求助10
26秒前
默茗完成签到,获得积分10
27秒前
赘婿应助李嘉图采纳,获得10
28秒前
浮游应助努力采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196657
求助须知:如何正确求助?哪些是违规求助? 4378232
关于积分的说明 13635659
捐赠科研通 4233741
什么是DOI,文献DOI怎么找? 2322414
邀请新用户注册赠送积分活动 1320532
关于科研通互助平台的介绍 1270952