Estimation of Appendicular Skeletal Muscle Mass for Women Aged 60-70 Years Using a Machine Learning Approach

生物电阻抗分析 医学 人体测量学 体质指数 线性回归 腰围 Lasso(编程语言) 回归分析 统计 横断面研究 标准误差 平淡——奥特曼情节 数学 协议限制 核医学 内科学 计算机科学 病理 万维网
作者
Jianan Shi,Qiang He,Yang Pan,Xianliang Zhang,Ming Li,Si Chen
出处
期刊:Journal of the American Medical Directors Association [Elsevier]
卷期号:23 (12): 1985.e1-1985.e7 被引量:4
标识
DOI:10.1016/j.jamda.2022.09.002
摘要

This article aimed to develop and validate an anthropometric equation based on the least absolute shrinkage and selection operator (LASSO) regression, a machine learning approach, to predict appendicular skeletal muscle mass (ASM) in 60-70-year-old women.A cross-sectional study.Community-dwelling women aged 60-70 years.A total of 1296 community-dwelling women aged 60-70 years were randomly divided into the development or the validation group (1:1 ratio). ASM was evaluated by bioelectrical impedance analysis (BIA) as the reference. Variables including weight, height, body mass index (BMI), sitting height, waist-to-hip ratio (WHR), calf circumference (CC), and 5 summary measures of limb length were incorporated as candidate predictors. LASSO regression was used to select predictors with 10-fold cross-validation, and multiple linear regression was applied to develop the BIA-measured ASM prediction equation. Paired t test and Bland-Altman analysis were used to validate agreement.Weight, WHR, CC, and sitting height were selected by LASSO regression as independent variables and the equation is ASM = 0.2308 × weight (kg) - 27.5652 × WHR + 8.0179 × CC (m) + 2.3772 × Sitting height (m) + 22.2405 (adjusted R2 = 0.848, standard error of the estimate = 0.661 kg, P < .001). Bland-Altman analysis showed a high agreement between BIA-measured ASM and predicted ASM that the mean difference between the 2 methods was -0.041 kg, with the 95% limits of agreement of -1.441 to 1.359 kg.The equation for 60-70-year-old women could provide an available measurement of ASM for communities that cannot equip with BIA, which promotes the early screening of sarcopenia at the community level. Additionally, sitting height could predict ASM effectively, suggesting that maybe it can be used in further studies of muscle mass.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
刚刚
1秒前
今后应助333采纳,获得10
2秒前
pu发布了新的文献求助10
3秒前
Akim应助梓榆采纳,获得10
4秒前
劼大大完成签到,获得积分10
4秒前
最优解完成签到 ,获得积分20
5秒前
5秒前
通~发布了新的文献求助10
5秒前
一段乐多完成签到,获得积分10
6秒前
6秒前
6秒前
给我找完成签到,获得积分10
7秒前
桐桐应助Yuki0616采纳,获得10
7秒前
小马甲应助鸣隐采纳,获得10
7秒前
ycd完成签到,获得积分10
8秒前
ark861023完成签到,获得积分10
8秒前
淡定问芙完成签到,获得积分10
8秒前
斯文败类应助惠惠采纳,获得10
9秒前
9秒前
Meowly完成签到,获得积分10
9秒前
10秒前
10秒前
陶醉觅夏发布了新的文献求助10
10秒前
pu完成签到,获得积分10
10秒前
小灵通完成签到,获得积分10
10秒前
给我找发布了新的文献求助10
10秒前
科研通AI2S应助LIn采纳,获得10
11秒前
gaga完成签到,获得积分10
11秒前
_Charmo完成签到,获得积分10
11秒前
Slemon完成签到,获得积分10
11秒前
谦谦姜完成签到,获得积分10
13秒前
14秒前
JINGZHANG发布了新的文献求助10
14秒前
14秒前
归海天与应助糊弄学专家采纳,获得10
14秒前
风中的青完成签到,获得积分10
15秒前
15秒前
15秒前
duxinyue关注了科研通微信公众号
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794