Estimation of Appendicular Skeletal Muscle Mass for Women Aged 60-70 Years Using a Machine Learning Approach

生物电阻抗分析 医学 人体测量学 体质指数 线性回归 腰围 Lasso(编程语言) 回归分析 统计 横断面研究 标准误差 平淡——奥特曼情节 数学 协议限制 核医学 内科学 计算机科学 病理 万维网
作者
Jianan Shi,Qiang He,Yang Pan,Xianliang Zhang,Ming Li,Si Chen
出处
期刊:Journal of the American Medical Directors Association [Elsevier]
卷期号:23 (12): 1985.e1-1985.e7 被引量:4
标识
DOI:10.1016/j.jamda.2022.09.002
摘要

This article aimed to develop and validate an anthropometric equation based on the least absolute shrinkage and selection operator (LASSO) regression, a machine learning approach, to predict appendicular skeletal muscle mass (ASM) in 60-70-year-old women.A cross-sectional study.Community-dwelling women aged 60-70 years.A total of 1296 community-dwelling women aged 60-70 years were randomly divided into the development or the validation group (1:1 ratio). ASM was evaluated by bioelectrical impedance analysis (BIA) as the reference. Variables including weight, height, body mass index (BMI), sitting height, waist-to-hip ratio (WHR), calf circumference (CC), and 5 summary measures of limb length were incorporated as candidate predictors. LASSO regression was used to select predictors with 10-fold cross-validation, and multiple linear regression was applied to develop the BIA-measured ASM prediction equation. Paired t test and Bland-Altman analysis were used to validate agreement.Weight, WHR, CC, and sitting height were selected by LASSO regression as independent variables and the equation is ASM = 0.2308 × weight (kg) - 27.5652 × WHR + 8.0179 × CC (m) + 2.3772 × Sitting height (m) + 22.2405 (adjusted R2 = 0.848, standard error of the estimate = 0.661 kg, P < .001). Bland-Altman analysis showed a high agreement between BIA-measured ASM and predicted ASM that the mean difference between the 2 methods was -0.041 kg, with the 95% limits of agreement of -1.441 to 1.359 kg.The equation for 60-70-year-old women could provide an available measurement of ASM for communities that cannot equip with BIA, which promotes the early screening of sarcopenia at the community level. Additionally, sitting height could predict ASM effectively, suggesting that maybe it can be used in further studies of muscle mass.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程琳发布了新的文献求助10
1秒前
yuyyyi发布了新的文献求助10
1秒前
韦鑫龙完成签到,获得积分10
1秒前
1秒前
坚强的安柏完成签到,获得积分10
1秒前
常雨点儿发布了新的文献求助10
3秒前
小森发布了新的文献求助10
4秒前
zj完成签到,获得积分10
4秒前
NexusExplorer应助严三笑采纳,获得10
5秒前
汉堡包应助由道罡采纳,获得10
6秒前
6秒前
8秒前
9秒前
科研通AI2S应助白华苍松采纳,获得10
9秒前
10秒前
NexusExplorer应助未央采纳,获得10
12秒前
桐桐应助Red-Rain采纳,获得10
12秒前
Miriammmmm完成签到,获得积分10
13秒前
懒羊羊完成签到 ,获得积分10
13秒前
哟嚛发布了新的文献求助10
14秒前
科目三应助HAHA采纳,获得10
15秒前
初之发布了新的文献求助10
15秒前
赘婿应助lalala采纳,获得10
16秒前
16秒前
iuuuu完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
Hello应助水下月采纳,获得10
18秒前
胡图图完成签到,获得积分20
20秒前
20秒前
sssjjjxx完成签到,获得积分20
22秒前
22秒前
22秒前
玄风应助帅气小刺猬采纳,获得10
23秒前
24秒前
27秒前
月出西山上完成签到 ,获得积分10
27秒前
思源应助鲤鱼凛采纳,获得10
27秒前
seedcui发布了新的文献求助10
27秒前
快乐曼荷发布了新的文献求助10
29秒前
寒冷的剑愁完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537102
求助须知:如何正确求助?哪些是违规求助? 4624693
关于积分的说明 14592890
捐赠科研通 4565218
什么是DOI,文献DOI怎么找? 2502220
邀请新用户注册赠送积分活动 1480944
关于科研通互助平台的介绍 1452123