Digital twin‐assisted fault diagnosis system for robot joints with insufficient data

机器人 断层(地质) 计算机科学 人工智能 领域(数学分析) 分类器(UML) 数学 地质学 数学分析 地震学
作者
Zelong Song,Huaitao Shi,Xiaotian Bai,Guowei Li
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:40 (2): 258-271 被引量:18
标识
DOI:10.1002/rob.22127
摘要

Abstract The robot joint is an important component of the construction robot, and its fault diagnosis can ensure the exact execution of building jobs, stable operation, and timely prevention of probable safety mishaps. However, deep learning‐based fault diagnosis needs a multitude of measured fault data, which is difficult to obtain for various reasons. To solve the problem of insufficient data, a digital twin‐assisted fault diagnosis system for robot joints is proposed. First, a simplified dynamics model of the robot joint is developed to generate the virtual entity data which can be used as the X‐domain data for the digital twin model. Second, a CycleGAN‐based digital twin model is proposed to map the virtual entity (X‐domain) data to the physical entity (Y‐domain) utilizing only a small amount of measured data. In the end, a test‐rig for the robot joint is built to simulate the robot's working conditions, and the CNN‐ResNet classifier is utilized to verify the effectiveness of the simulated data generated by the digital twin model. The results show that the fault diagnosis accuracy can be increased from 32.5% to 98.86% utilizing only 400 sets of measured data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助林林总总采纳,获得10
2秒前
神勇金毛完成签到,获得积分10
3秒前
3秒前
4秒前
666完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
罐罐儿应助han采纳,获得10
8秒前
9秒前
10秒前
666发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
泠空完成签到 ,获得积分10
11秒前
Aks完成签到,获得积分10
13秒前
大海发布了新的文献求助10
15秒前
泠空关注了科研通微信公众号
15秒前
16秒前
淡定沧海完成签到 ,获得积分10
17秒前
蓝莓关注了科研通微信公众号
17秒前
Sodium发布了新的文献求助10
17秒前
17秒前
19秒前
19秒前
19秒前
yeyeye完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
nnn发布了新的文献求助10
22秒前
23秒前
丘比特应助冷艳的火龙果采纳,获得10
23秒前
大个应助不安的靖柔采纳,获得10
23秒前
Aaaaa发布了新的文献求助10
24秒前
highlight发布了新的文献求助10
24秒前
26秒前
yeyeye发布了新的文献求助10
26秒前
冷傲老头发布了新的文献求助10
27秒前
300发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4579152
求助须知:如何正确求助?哪些是违规求助? 3997646
关于积分的说明 12376196
捐赠科研通 3671974
什么是DOI,文献DOI怎么找? 2023661
邀请新用户注册赠送积分活动 1057695
科研通“疑难数据库(出版商)”最低求助积分说明 944525