DSEU-net: A novel deep supervision SEU-net for medical ultrasound image segmentation

雅卡索引 计算机科学 分割 人工智能 特征(语言学) 超声波 模式识别(心理学) 掷骰子 精确性和召回率 编码器 深度学习 医学 数学 放射科 统计 哲学 操作系统 语言学
作者
Gongping Chen,Yuming Liu,Qian Jiang,Jianxun Zhang,Xiaotao Yin,Liang Cui,Yu Dai
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:223: 119939-119939 被引量:13
标识
DOI:10.1016/j.eswa.2023.119939
摘要

The automatic and accurate medical ultrasound image segmentation has been a challenging task due to the coupled interference of various internal and external factors. In recent years, CNN techniques have been widely and successfully used in medical image segmentation. Motivated by this, this paper proposes a novel squeeze-and-excitation attention U-net with deep supervision (DSEU-net) for medical ultrasound image segmentation. Specifically, a deeper U-net is first used as a benchmark network to capture sufficient target feature information from complex ultrasound images. Then, the squeeze-and-excitation (SE) block is regarded as the bond between encoder and decoder to enhance the attention to useful object regions. Moreover, the introduction of SE block not only strengthens the association of useful information at a distance, but also suppresses the introduction of irrelevant information. Finally, the deep supervised constraints are added to the decoding stage of the network to refine the prediction masks of ultrasound images. Extensive experimental results on three clinical ultrasound datasets show that DSEU-net has better robustness and superiority in ultrasound image segmentation. In the segmentation of the first breast ultrasound dataset (BUSI), the values of Jaccard, Precision, Recall, Specificity and Dice are 70.36%, 79.73%, 82.70%, 97.42% and 78.51%, respectively. The values of Jaccard, Precision, Recall, Specificity and Dice for our method on the second breast ultrasound dataset (Dataset B) are 73.17%, 82.58%, 84.02%, 99.05% and 81.50%, respectively. For the segmentation of kidney ultrasound dataset (KUS), the values of Jaccard, Precision, Recall, Specificity, Dice, HD, ASSD and ABD are 89.47, 94.77, 94.36, 99.10, 94.32, 12.42, 0.48 and 3.44, respectively. Comparing with the original U-net, DSEU-net improved on average 8.28% and 12.55% on five metrics for two breast ultrasound data. DSEU-net improved on average 54.81% on eight metrics for the kidney ultrasound dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫葡萄完成签到,获得积分20
刚刚
breeze发布了新的文献求助50
2秒前
3秒前
传奇3应助yunyii采纳,获得10
4秒前
乐乐应助FCL采纳,获得10
5秒前
木习完成签到,获得积分10
5秒前
6秒前
Hotwin完成签到,获得积分20
6秒前
7秒前
科目三应助鲜于冰彤采纳,获得10
8秒前
Orange应助micaixing2006采纳,获得10
8秒前
0V0发布了新的文献求助10
11秒前
科研通AI2S应助ok采纳,获得10
12秒前
13秒前
老肥彭完成签到,获得积分10
13秒前
14秒前
甘木鸣完成签到 ,获得积分10
17秒前
小小怪将军完成签到,获得积分10
17秒前
陈大婷发布了新的文献求助10
18秒前
fangqiqi发布了新的文献求助30
18秒前
0V0完成签到,获得积分10
23秒前
24秒前
25秒前
dogontree发布了新的文献求助10
25秒前
陈大婷完成签到,获得积分20
25秒前
顺心羊关注了科研通微信公众号
27秒前
欣欣发布了新的文献求助20
28秒前
好哥哥完成签到,获得积分10
28秒前
科研通AI2S应助涌现采纳,获得10
29秒前
JamesPei应助freedom313514采纳,获得10
29秒前
30秒前
30秒前
zzz发布了新的文献求助10
30秒前
32秒前
墨竹滴翠发布了新的文献求助10
32秒前
32秒前
Hello应助Liu采纳,获得10
33秒前
33秒前
丘比特应助dogontree采纳,获得10
34秒前
积极慕梅应助jklhughjgiu采纳,获得10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133348
求助须知:如何正确求助?哪些是违规求助? 2784511
关于积分的说明 7767015
捐赠科研通 2439679
什么是DOI,文献DOI怎么找? 1296929
科研通“疑难数据库(出版商)”最低求助积分说明 624809
版权声明 600771