A bacterial signature-based method for the identification of seven forensically relevant human body fluids

鉴定(生物学) 签名(拓扑) 计算生物学 生物 色谱法 化学 数学 生态学 几何学
作者
Denise Wohlfahrt,Antonio Limjuco Tan‐Torres,Raquel Green,Kathleen Brim,Najai Bradley,Angela Brand,Eric Abshier,Francy Nogales,Kailey Babcock,J. Paul Brooks,Sarah J. Seashols‐Williams,Baneshwar Singh
出处
期刊:Forensic Science International-genetics [Elsevier BV]
卷期号:65: 102865-102865 被引量:19
标识
DOI:10.1016/j.fsigen.2023.102865
摘要

Detection and identification of body fluids plays a crucial role in criminal investigation, as it provides information on the source of the DNA as well as corroborative evidence regarding the crime committed, scene, and/or association with persons of interest. Historically, forensic serological methods have been chemical, immunological, catalytic, spectroscopic, and/or microscopic in nature. However, most of these methods are presumptive, with few robust confirmatory exceptions. In recent years several new molecular methods (mRNA, miRNA, DNA methylation, etc.) have been proposed; although promising, these methods require high quality human DNA or RNA. Additional steps are required in RNA based methods. Additionally, RNA based methods cannot be used for old cases where only DNA extracts remain to sample from. In this study, a novel non-human DNA (microbiome) based method was developed for the identification of the majority of forensically relevant human biological samples. Eight hundred and twelve (n = 812) biological samples (semen, vaginal fluid, menstrual blood, saliva, feces, urine, and blood) were collected and preserved using methods commonly used in forensic laboratories for evidence collection. Variable region four (V4) of 16 S ribosomal DNA (16 S rDNA) was amplified using a dual-indexing strategy and then sequenced on the MiSeq FGx sequencing platform using the MiSeq Reagent Kit v2 (500 cycles) and following the manufacturer's protocol. Machine learning prediction models were used to assess the classification accuracy of the newly developed method. As there was no significant difference in bacterial communities between vaginal fluid, menstrual blood, and female urine, these were combined as female intimate samples. Except in urine, the bacterial structures associated with male and female body fluid samples were not significantly different from one another. The newly developed method accurately identified human body fluid samples with an overall accuracy of more than 88%. This newly developed bacterial signature-based method is fast (no additional steps are needed as the same DNA can be used for both body fluid identification and STR typing), efficient (consume less sample as a single test can identify all major body fluids), sensitive (needs only 5 pg of bacterial DNA), accurate, and can be easily added into a forensic high throughput sequencing (HTS) panel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的裙子完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
美好易烟发布了新的文献求助10
1秒前
mdJdm完成签到 ,获得积分10
1秒前
852应助小周采纳,获得10
1秒前
1秒前
2秒前
彭于晏应助笑点低的碧琴采纳,获得10
2秒前
周杰伦关注了科研通微信公众号
2秒前
诗琪发布了新的文献求助10
2秒前
念初完成签到 ,获得积分10
2秒前
一一二二三三肆完成签到 ,获得积分20
2秒前
可爱的函函应助陈敏采纳,获得20
3秒前
3秒前
4秒前
5秒前
5秒前
Akim应助杨梦茹采纳,获得10
5秒前
OVERLXRD完成签到,获得积分10
6秒前
1234567890完成签到,获得积分10
6秒前
7秒前
流浪小诗人完成签到,获得积分10
7秒前
xzy998发布了新的文献求助30
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
科研通AI5应助kingyo采纳,获得10
8秒前
科研通AI6应助WNL采纳,获得10
8秒前
烟花应助陈灿灿采纳,获得10
9秒前
花开hhhhhhh发布了新的文献求助10
9秒前
李健应助秀儿采纳,获得10
9秒前
要减肥的狗完成签到,获得积分10
9秒前
胖胖发布了新的文献求助10
10秒前
mochi发布了新的文献求助10
10秒前
10秒前
1234567890发布了新的文献求助10
10秒前
科研通AI6应助寻凝采纳,获得10
11秒前
12发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835