A bacterial signature-based method for the identification of seven forensically relevant human body fluids

鉴定(生物学) 签名(拓扑) 计算生物学 生物 色谱法 化学 数学 生态学 几何学
作者
Denise Wohlfahrt,Antonio Limjuco Tan‐Torres,Raquel Green,Kathleen Brim,Najai Bradley,Angela Brand,Eric Abshier,Francy Nogales,Kailey Babcock,J. Paul Brooks,Sarah J. Seashols‐Williams,Baneshwar Singh
出处
期刊:Forensic Science International-genetics [Elsevier]
卷期号:65: 102865-102865 被引量:4
标识
DOI:10.1016/j.fsigen.2023.102865
摘要

Detection and identification of body fluids plays a crucial role in criminal investigation, as it provides information on the source of the DNA as well as corroborative evidence regarding the crime committed, scene, and/or association with persons of interest. Historically, forensic serological methods have been chemical, immunological, catalytic, spectroscopic, and/or microscopic in nature. However, most of these methods are presumptive, with few robust confirmatory exceptions. In recent years several new molecular methods (mRNA, miRNA, DNA methylation, etc.) have been proposed; although promising, these methods require high quality human DNA or RNA. Additional steps are required in RNA based methods. Additionally, RNA based methods cannot be used for old cases where only DNA extracts remain to sample from. In this study, a novel non-human DNA (microbiome) based method was developed for the identification of the majority of forensically relevant human biological samples. Eight hundred and twelve (n = 812) biological samples (semen, vaginal fluid, menstrual blood, saliva, feces, urine, and blood) were collected and preserved using methods commonly used in forensic laboratories for evidence collection. Variable region four (V4) of 16 S ribosomal DNA (16 S rDNA) was amplified using a dual-indexing strategy and then sequenced on the MiSeq FGx sequencing platform using the MiSeq Reagent Kit v2 (500 cycles) and following the manufacturer's protocol. Machine learning prediction models were used to assess the classification accuracy of the newly developed method. As there was no significant difference in bacterial communities between vaginal fluid, menstrual blood, and female urine, these were combined as female intimate samples. Except in urine, the bacterial structures associated with male and female body fluid samples were not significantly different from one another. The newly developed method accurately identified human body fluid samples with an overall accuracy of more than 88%. This newly developed bacterial signature-based method is fast (no additional steps are needed as the same DNA can be used for both body fluid identification and STR typing), efficient (consume less sample as a single test can identify all major body fluids), sensitive (needs only 5 pg of bacterial DNA), accurate, and can be easily added into a forensic high throughput sequencing (HTS) panel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tender完成签到,获得积分10
2秒前
小玄子完成签到,获得积分10
2秒前
2秒前
劲秉应助Running采纳,获得10
2秒前
shaft完成签到,获得积分10
4秒前
我是老大应助花城采纳,获得10
5秒前
田様应助好运藏在善良里采纳,获得10
6秒前
wanci应助fugdu采纳,获得50
7秒前
洛必达完成签到,获得积分10
8秒前
9秒前
Jnest完成签到 ,获得积分10
10秒前
11秒前
西红柿有股番茄味完成签到,获得积分10
12秒前
14秒前
一往而深完成签到,获得积分10
16秒前
星星完成签到 ,获得积分10
17秒前
17秒前
花城完成签到,获得积分10
17秒前
壮观傲霜完成签到 ,获得积分10
18秒前
暴发户完成签到,获得积分20
20秒前
曾昭适完成签到,获得积分10
20秒前
21秒前
21秒前
lilac完成签到,获得积分10
22秒前
22秒前
不过尔尔完成签到 ,获得积分10
22秒前
Eric完成签到 ,获得积分0
22秒前
24秒前
尚安姅完成签到,获得积分10
25秒前
陈__完成签到,获得积分20
25秒前
碳烤小黑茶完成签到 ,获得积分10
25秒前
28秒前
FashionBoy应助StevenZhao采纳,获得10
29秒前
29秒前
劲秉应助大力的诗蕾采纳,获得10
30秒前
拼搏山槐完成签到 ,获得积分10
30秒前
33秒前
勤劳的雨琴完成签到,获得积分10
33秒前
zhangqq完成签到,获得积分10
35秒前
Orange应助东明采纳,获得10
36秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268922
求助须知:如何正确求助?哪些是违规求助? 2908391
关于积分的说明 8345542
捐赠科研通 2578672
什么是DOI,文献DOI怎么找? 1402325
科研通“疑难数据库(出版商)”最低求助积分说明 655395
邀请新用户注册赠送积分活动 634514