A bacterial signature-based method for the identification of seven forensically relevant human body fluids

鉴定(生物学) 签名(拓扑) 计算生物学 生物 色谱法 化学 数学 生态学 几何学
作者
Denise Wohlfahrt,Antonio Limjuco Tan‐Torres,Raquel Green,Kathleen Brim,Najai Bradley,Angela Brand,Eric Abshier,Francy Nogales,Kailey Babcock,J. Paul Brooks,Sarah J. Seashols‐Williams,Baneshwar Singh
出处
期刊:Forensic Science International-genetics [Elsevier BV]
卷期号:65: 102865-102865 被引量:14
标识
DOI:10.1016/j.fsigen.2023.102865
摘要

Detection and identification of body fluids plays a crucial role in criminal investigation, as it provides information on the source of the DNA as well as corroborative evidence regarding the crime committed, scene, and/or association with persons of interest. Historically, forensic serological methods have been chemical, immunological, catalytic, spectroscopic, and/or microscopic in nature. However, most of these methods are presumptive, with few robust confirmatory exceptions. In recent years several new molecular methods (mRNA, miRNA, DNA methylation, etc.) have been proposed; although promising, these methods require high quality human DNA or RNA. Additional steps are required in RNA based methods. Additionally, RNA based methods cannot be used for old cases where only DNA extracts remain to sample from. In this study, a novel non-human DNA (microbiome) based method was developed for the identification of the majority of forensically relevant human biological samples. Eight hundred and twelve (n = 812) biological samples (semen, vaginal fluid, menstrual blood, saliva, feces, urine, and blood) were collected and preserved using methods commonly used in forensic laboratories for evidence collection. Variable region four (V4) of 16 S ribosomal DNA (16 S rDNA) was amplified using a dual-indexing strategy and then sequenced on the MiSeq FGx sequencing platform using the MiSeq Reagent Kit v2 (500 cycles) and following the manufacturer's protocol. Machine learning prediction models were used to assess the classification accuracy of the newly developed method. As there was no significant difference in bacterial communities between vaginal fluid, menstrual blood, and female urine, these were combined as female intimate samples. Except in urine, the bacterial structures associated with male and female body fluid samples were not significantly different from one another. The newly developed method accurately identified human body fluid samples with an overall accuracy of more than 88%. This newly developed bacterial signature-based method is fast (no additional steps are needed as the same DNA can be used for both body fluid identification and STR typing), efficient (consume less sample as a single test can identify all major body fluids), sensitive (needs only 5 pg of bacterial DNA), accurate, and can be easily added into a forensic high throughput sequencing (HTS) panel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
靠谱完成签到 ,获得积分10
2秒前
榴莲姑娘发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
SYLH应助yuanll采纳,获得20
3秒前
4秒前
dashi完成签到 ,获得积分10
4秒前
赘婿应助Xeon采纳,获得30
4秒前
4秒前
4秒前
SciGPT应助JACK采纳,获得10
5秒前
6秒前
Lsy完成签到,获得积分10
6秒前
6秒前
6秒前
ding发布了新的文献求助10
7秒前
小马甲应助老隋采纳,获得10
8秒前
榴莲姑娘完成签到,获得积分10
8秒前
lenken发布了新的文献求助10
8秒前
8秒前
咕噜完成签到 ,获得积分10
9秒前
和谐的阁发布了新的文献求助10
9秒前
9秒前
神勇从波发布了新的文献求助10
9秒前
顺利如冰完成签到,获得积分10
9秒前
9秒前
细心健柏完成签到 ,获得积分10
10秒前
学术z完成签到,获得积分10
11秒前
CipherSage应助暗栀采纳,获得10
11秒前
11秒前
敏感初露完成签到,获得积分10
11秒前
11秒前
Xeon完成签到,获得积分10
11秒前
123发布了新的文献求助10
11秒前
请叫我风吹麦浪应助VDC采纳,获得10
12秒前
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3743833
求助须知:如何正确求助?哪些是违规求助? 3286494
关于积分的说明 10050575
捐赠科研通 3003003
什么是DOI,文献DOI怎么找? 1648680
邀请新用户注册赠送积分活动 784737
科研通“疑难数据库(出版商)”最低求助积分说明 750832