A bacterial signature-based method for the identification of seven forensically relevant human body fluids

鉴定(生物学) 签名(拓扑) 计算生物学 生物 色谱法 化学 数学 生态学 几何学
作者
Denise Wohlfahrt,Antonio Limjuco Tan‐Torres,Raquel Green,Kathleen Brim,Najai Bradley,Angela Brand,Eric Abshier,Francy Nogales,Kailey Babcock,J. Paul Brooks,Sarah J. Seashols‐Williams,Baneshwar Singh
出处
期刊:Forensic Science International-genetics [Elsevier]
卷期号:65: 102865-102865 被引量:19
标识
DOI:10.1016/j.fsigen.2023.102865
摘要

Detection and identification of body fluids plays a crucial role in criminal investigation, as it provides information on the source of the DNA as well as corroborative evidence regarding the crime committed, scene, and/or association with persons of interest. Historically, forensic serological methods have been chemical, immunological, catalytic, spectroscopic, and/or microscopic in nature. However, most of these methods are presumptive, with few robust confirmatory exceptions. In recent years several new molecular methods (mRNA, miRNA, DNA methylation, etc.) have been proposed; although promising, these methods require high quality human DNA or RNA. Additional steps are required in RNA based methods. Additionally, RNA based methods cannot be used for old cases where only DNA extracts remain to sample from. In this study, a novel non-human DNA (microbiome) based method was developed for the identification of the majority of forensically relevant human biological samples. Eight hundred and twelve (n = 812) biological samples (semen, vaginal fluid, menstrual blood, saliva, feces, urine, and blood) were collected and preserved using methods commonly used in forensic laboratories for evidence collection. Variable region four (V4) of 16 S ribosomal DNA (16 S rDNA) was amplified using a dual-indexing strategy and then sequenced on the MiSeq FGx sequencing platform using the MiSeq Reagent Kit v2 (500 cycles) and following the manufacturer's protocol. Machine learning prediction models were used to assess the classification accuracy of the newly developed method. As there was no significant difference in bacterial communities between vaginal fluid, menstrual blood, and female urine, these were combined as female intimate samples. Except in urine, the bacterial structures associated with male and female body fluid samples were not significantly different from one another. The newly developed method accurately identified human body fluid samples with an overall accuracy of more than 88%. This newly developed bacterial signature-based method is fast (no additional steps are needed as the same DNA can be used for both body fluid identification and STR typing), efficient (consume less sample as a single test can identify all major body fluids), sensitive (needs only 5 pg of bacterial DNA), accurate, and can be easily added into a forensic high throughput sequencing (HTS) panel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LingC完成签到,获得积分10
刚刚
常改名完成签到,获得积分10
1秒前
xyq发布了新的文献求助10
1秒前
幽杨完成签到,获得积分10
1秒前
CASLSD完成签到 ,获得积分10
2秒前
三伏天完成签到,获得积分10
4秒前
lin完成签到,获得积分10
5秒前
缓慢的王完成签到,获得积分10
5秒前
ZGH完成签到,获得积分10
5秒前
6秒前
xyq完成签到,获得积分20
7秒前
CDI和LIB完成签到,获得积分10
8秒前
叶泽完成签到,获得积分10
8秒前
ich完成签到,获得积分10
9秒前
刘鑫慧完成签到 ,获得积分10
9秒前
伟大毕业旅程完成签到 ,获得积分10
10秒前
不想读书完成签到,获得积分10
11秒前
露露发布了新的文献求助10
11秒前
hallie完成签到,获得积分10
12秒前
朴实冷松完成签到 ,获得积分10
12秒前
孙刚完成签到 ,获得积分10
13秒前
大熊完成签到 ,获得积分10
13秒前
LDDLleor完成签到,获得积分10
15秒前
xiang完成签到 ,获得积分10
16秒前
塘仔完成签到,获得积分10
16秒前
MM完成签到,获得积分10
17秒前
17秒前
Ava应助闫佳美采纳,获得10
18秒前
18秒前
pophoo完成签到,获得积分10
18秒前
Stuki完成签到,获得积分10
18秒前
杨杨杨完成签到,获得积分10
19秒前
司徒元瑶完成签到 ,获得积分10
20秒前
木心完成签到,获得积分10
20秒前
科研小白完成签到,获得积分10
21秒前
391X小king给391X小king的求助进行了留言
21秒前
wlywdb完成签到,获得积分10
21秒前
SJW--666完成签到,获得积分0
22秒前
悦耳代双完成签到 ,获得积分10
22秒前
小y发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645203
求助须知:如何正确求助?哪些是违规求助? 4768026
关于积分的说明 15026718
捐赠科研通 4803706
什么是DOI,文献DOI怎么找? 2568447
邀请新用户注册赠送积分活动 1525738
关于科研通互助平台的介绍 1485378