Development and Validation of a Lifespan Prediction Model in Chinese Adults Aged 65 Years or Older

医学 组内相关 老年学 人口学 Lasso(编程语言) 心理测量学 计算机科学 临床心理学 万维网 社会学
作者
Jinhui Zhou,Chen Chen,Jun Wang,Sixin Liu,Xinwei Li,Yuan Wei,Lihong Ye,Jiaming Ye,Virginia B. Kraus,Yuebin Lv,Xiaoming Shi
出处
期刊:Journal of the American Medical Directors Association [Elsevier BV]
卷期号:24 (7): 1068-1073.e6
标识
DOI:10.1016/j.jamda.2023.02.016
摘要

Objectives Previous studies investigated factors associated with mortality. Nevertheless, evidence is limited regarding the determinants of lifespan. We aimed to develop and validate a lifespan prediction model based on the most important predictors. Design A prospective cohort study. Setting and Participants A total of 23,892 community-living adults aged 65 years or older with confirmed death records between 1998 and 2018 from 23 provinces in China. Methods Information including demographic characteristics, lifestyle, functional health, and prevalence of diseases was collected. The risk prediction model was generated using multivariate linear regression, incorporating the most important predictors identified by the Lasso selection method. We used 1000 bootstrap resampling for the internal validation. The model performance was assessed by adjusted R2, root mean square error (RMSE), mean absolute error (MAE), and intraclass correlation coefficient (ICC). Results Twenty-one predictors were included in the final lifespan prediction model. Older adults with longer lifespans were characterized by older age at baseline, female, minority race, living in rural areas, married, with healthier lifestyles and more leisure engagement, better functional status, and absence of diseases. The predicted lifespans were highly consistent with observed lifespans, with an adjusted R2 of 0.893. RMSE was 2.86 (95% CI 2.84–2.88) and MAE was 2.18 (95% CI 2.16–2.20) years. The ICC between observed and predicted lifespans was 0.971 (95% CI 0.971–0.971). Conclusions and Implications The lifespan prediction model was validated with good performance, the web-based prediction tool can be easily applied in practical use as it relies on all easily accessible variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陪你去流浪完成签到 ,获得积分10
刚刚
杉杉发布了新的文献求助10
1秒前
慕青应助林一采纳,获得10
1秒前
Lynn发布了新的文献求助10
2秒前
啦啦完成签到 ,获得积分10
2秒前
2秒前
周一发布了新的文献求助20
2秒前
2秒前
繁星洒满夜幕完成签到,获得积分10
4秒前
4秒前
快乐难敌发布了新的文献求助10
5秒前
5秒前
阿绿完成签到 ,获得积分20
5秒前
5秒前
LEMONS应助风兮雨采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得30
7秒前
Jiang应助科研通管家采纳,获得50
7秒前
7秒前
7秒前
享邑完成签到,获得积分10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得30
8秒前
8秒前
大个应助科研通管家采纳,获得10
8秒前
ED应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得30
8秒前
大模型应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
9秒前
pluto应助酷酷世德采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
ED应助科研通管家采纳,获得10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954916
求助须知:如何正确求助?哪些是违规求助? 3501031
关于积分的说明 11101644
捐赠科研通 3231451
什么是DOI,文献DOI怎么找? 1786425
邀请新用户注册赠送积分活动 870050
科研通“疑难数据库(出版商)”最低求助积分说明 801785