Development and Validation of a Lifespan Prediction Model in Chinese Adults Aged 65 Years or Older

医学 组内相关 老年学 人口学 Lasso(编程语言) 心理测量学 临床心理学 社会学 万维网 计算机科学
作者
Jinhui Zhou,Chen Chen,Jun Wang,Sixin Liu,Xinwei Li,Yuan Wei,Lihong Ye,Jiaming Ye,Virginia B. Kraus,Yuebin Lv,Xiaoming Shi
出处
期刊:Journal of the American Medical Directors Association [Elsevier]
卷期号:24 (7): 1068-1073.e6
标识
DOI:10.1016/j.jamda.2023.02.016
摘要

Objectives Previous studies investigated factors associated with mortality. Nevertheless, evidence is limited regarding the determinants of lifespan. We aimed to develop and validate a lifespan prediction model based on the most important predictors. Design A prospective cohort study. Setting and Participants A total of 23,892 community-living adults aged 65 years or older with confirmed death records between 1998 and 2018 from 23 provinces in China. Methods Information including demographic characteristics, lifestyle, functional health, and prevalence of diseases was collected. The risk prediction model was generated using multivariate linear regression, incorporating the most important predictors identified by the Lasso selection method. We used 1000 bootstrap resampling for the internal validation. The model performance was assessed by adjusted R2, root mean square error (RMSE), mean absolute error (MAE), and intraclass correlation coefficient (ICC). Results Twenty-one predictors were included in the final lifespan prediction model. Older adults with longer lifespans were characterized by older age at baseline, female, minority race, living in rural areas, married, with healthier lifestyles and more leisure engagement, better functional status, and absence of diseases. The predicted lifespans were highly consistent with observed lifespans, with an adjusted R2 of 0.893. RMSE was 2.86 (95% CI 2.84–2.88) and MAE was 2.18 (95% CI 2.16–2.20) years. The ICC between observed and predicted lifespans was 0.971 (95% CI 0.971–0.971). Conclusions and Implications The lifespan prediction model was validated with good performance, the web-based prediction tool can be easily applied in practical use as it relies on all easily accessible variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuyu发布了新的文献求助10
刚刚
hvgjgfjhgjh发布了新的文献求助10
2秒前
nine完成签到,获得积分10
2秒前
someone完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
smy发布了新的文献求助30
4秒前
斯内克完成签到,获得积分10
5秒前
5秒前
浮游应助野生菜狗采纳,获得10
6秒前
6秒前
欢呼的疾完成签到,获得积分10
6秒前
失眠茗完成签到,获得积分10
6秒前
科研通AI6应助别凡采纳,获得10
6秒前
脑洞疼应助yuyu采纳,获得10
7秒前
ybh完成签到,获得积分10
7秒前
刘振岁完成签到,获得积分10
7秒前
xue完成签到 ,获得积分10
7秒前
LLLLLLLL应助可靠的之瑶采纳,获得10
7秒前
8秒前
8秒前
YY完成签到,获得积分20
8秒前
问题多多完成签到,获得积分10
8秒前
皮卡丘发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
熙熙完成签到,获得积分10
9秒前
喜悦的梦芝完成签到,获得积分10
10秒前
king发布了新的文献求助30
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
火火完成签到,获得积分10
12秒前
范书豪发布了新的文献求助10
12秒前
12秒前
洛子蓁发布了新的文献求助10
12秒前
13秒前
猛踹瘸子那条好腿完成签到,获得积分10
14秒前
完美世界应助同人一剑采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571571
求助须知:如何正确求助?哪些是违规求助? 4656806
关于积分的说明 14717928
捐赠科研通 4597626
什么是DOI,文献DOI怎么找? 2523291
邀请新用户注册赠送积分活动 1494143
关于科研通互助平台的介绍 1464280