From MNIST to ImageNet and Back: Benchmarking Continual Curriculum Learning

计算机科学 机器学习 杠杆(统计) 标杆管理 人工智能 MNIST数据库 稳健性(进化) 课程 利用 遗忘 数据科学 深度学习 心理学 教育学 生物化学 化学 语言学 哲学 计算机安全 营销 业务 基因
作者
Kamil Faber,Dominik Żurek,Marcin Pietroń,Nathalie Japkowicz,Antonio Vergari,Roberto Corizzo
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2303.11076
摘要

Continual learning (CL) is one of the most promising trends in recent machine learning research. Its goal is to go beyond classical assumptions in machine learning and develop models and learning strategies that present high robustness in dynamic environments. The landscape of CL research is fragmented into several learning evaluation protocols, comprising different learning tasks, datasets, and evaluation metrics. Additionally, the benchmarks adopted so far are still distant from the complexity of real-world scenarios, and are usually tailored to highlight capabilities specific to certain strategies. In such a landscape, it is hard to objectively assess strategies. In this work, we fill this gap for CL on image data by introducing two novel CL benchmarks that involve multiple heterogeneous tasks from six image datasets, with varying levels of complexity and quality. Our aim is to fairly evaluate current state-of-the-art CL strategies on a common ground that is closer to complex real-world scenarios. We additionally structure our benchmarks so that tasks are presented in increasing and decreasing order of complexity -- according to a curriculum -- in order to evaluate if current CL models are able to exploit structure across tasks. We devote particular emphasis to providing the CL community with a rigorous and reproducible evaluation protocol for measuring the ability of a model to generalize and not to forget while learning. Furthermore, we provide an extensive experimental evaluation showing that popular CL strategies, when challenged with our benchmarks, yield sub-par performance, high levels of forgetting, and present a limited ability to effectively leverage curriculum task ordering. We believe that these results highlight the need for rigorous comparisons in future CL works as well as pave the way to design new CL strategies that are able to deal with more complex scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楠小秾完成签到,获得积分10
刚刚
刚刚
asa发布了新的文献求助10
刚刚
一个美女完成签到,获得积分10
刚刚
1秒前
Mr.Reese完成签到,获得积分10
1秒前
赖建琛完成签到 ,获得积分10
1秒前
2秒前
WSY完成签到,获得积分10
2秒前
泥豪完成签到,获得积分10
3秒前
愉快的晓啸完成签到,获得积分10
3秒前
科研通AI2S应助Angelie采纳,获得10
4秒前
4秒前
4秒前
z18032发布了新的文献求助10
5秒前
费老三发布了新的文献求助10
5秒前
6秒前
淡淡冰淇淋完成签到,获得积分20
6秒前
按住心动完成签到,获得积分20
6秒前
6秒前
852应助水上书采纳,获得10
6秒前
kc发布了新的文献求助10
6秒前
Gmhoo_完成签到,获得积分10
6秒前
vanilla完成签到 ,获得积分10
6秒前
HDrinnk完成签到,获得积分10
7秒前
凹凸先森完成签到,获得积分0
8秒前
luck完成签到,获得积分20
8秒前
8秒前
繁荣的匪完成签到,获得积分10
8秒前
牛肉面完成签到,获得积分0
8秒前
Hvard发布了新的文献求助30
9秒前
青菜完成签到,获得积分10
9秒前
炎燚完成签到 ,获得积分20
10秒前
俊逸若之完成签到,获得积分10
10秒前
10秒前
大狒狒发布了新的文献求助10
11秒前
冷漠的冰美式完成签到,获得积分10
11秒前
小二郎应助ezreal采纳,获得10
11秒前
梨子LZBL完成签到,获得积分20
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550880
求助须知:如何正确求助?哪些是违规求助? 3127255
关于积分的说明 9373042
捐赠科研通 2826359
什么是DOI,文献DOI怎么找? 1553714
邀请新用户注册赠送积分活动 725051
科研通“疑难数据库(出版商)”最低求助积分说明 714555